
J Math Chem (2010) 47:937–958
DOI 10.1007/s10910-009-9616-3

ORIGINAL PAPER

Ordering of the trees by minimal energies

Wen-Huan Wang · Li-Ying Kang

Received: 7 May 2009 / Accepted: 3 October 2009 / Published online: 24 October 2009
© Springer Science+Business Media, LLC 2009

Abstract The ordering of the trees with n vertices according to their minimal ener-
gies is investigated by means of a quasi-ordering relation and the theorem of zero
points. We deduce the first 9 trees for a general case with n ≥ 46. We obtain the first
12, 11, n +6, 17, 15, and 12 trees for 7117598 ≥ n ≥ 26, 25 ≥ n ≥ 18, 17 ≥ n ≥ 11,
n = 10, n = 9, and n = 8, respectively. For n = 7, we list all the trees in the increas-
ing order of their energies. The maximal diameters of the trees with minimal energies
obtained here are 4 for n ≥ 18 and 5 for 17 ≥ n ≥ 8, respectively. For the trees under
consideration, the ones with smaller diameters have smaller energies. In addition, we
in part prove a conjecture proposed by Zhou and Li (J. Math. Chem. 39:465–473,
2006).
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1 Introduction

Let T be a tree with n vertices and A(T ) its adjacent matrix. The characteristic poly-
nomial of T is [1]

φ(T, x) = det[xI − A(T )] =
n∑

i=0

ai xn−i =
[n/2]∑

k=0

(−1)km(T, k)xn−2k, (1)

where I is the unit matrix of order n, a0, a1, . . . , an are the coefficients of the char-
acteristic polynomial of T and m(T, k) is the number of k-matchings in T . The n
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roots of φ(T, x) = 0 are denoted by λ1, . . . , λn , which are the eigenvalues of the
corresponding graph T .

As is well known, the experimental heats due to the formation of conjugated hydro-
carbons are closely connected to the total π -electron energy. The total energy E(T ) of
all π -electrons in conjugated hydrocarbons, within the framework of Hückel molecular
orbital (HMO) approximation [1,2], can be reduced to

E(T ) =
n∑

i=1

|λi |. (2)

E(T ) can also be expressed as the Coulson integral formula [2, p. 141]

E(T ) = 2

π

+∞∫

0

1

x2 ln

⎡

⎣1 +
[n/2]∑

k=1

m(T, k)x2k

⎤

⎦ dx . (3)

The fact that E(T ) is a strictly monotonously increasing function of m(T, k) provides
us a useful way to compare the energies of the trees under consideration.

For two trees T1 and T2, Gutman and Zhang [3,4] introduced a quasi-ordering
relation as follows

m(T1, k) ≤ m(T2, k) ⇐⇒ T1 ≤ T2. (4)

Furthermore, if m(T1, k) < m(T2, k) for an arbitrary k, we have T1 < T2. If neither
T1 < T2 nor T1 > T2, we say that T1 and T2 are incomparable. According to (3), we
have E(T1) ≤ E(T2) and E(T1) < E(T2) from T1 ≤ T2 and T1 < T2, respectively.
For the sake of conciseness, we introduce the symbols “⇀”, “�” and “⇒” as follows:

E(T1) < E(T2) ⇐⇒ T1 ⇀ T2, E(T1) = E(T2) ⇐⇒ T1 � T2,

E(T1) ≤ E(T2) ⇐⇒ T1 ⇒ T2. (5)

Based on the above method of quasi-ordering, a number of results have been reached
for the ordering of graphs with extremal energies. For example, acyclic [3–9], unicyclic
[10–13], bicyclic [14] and tricyclic [15] graphs were considered.

We denote by Tn the set of trees with n vertices and by T d
n the subset of Tn in

which the trees have diameter d with 2 ≤ d ≤ n − 1. Let Pn be a path with n
vertices and the vertices of Pn are labelled consecutively by v0, v1, . . . , vn−1. Let
T d

n (n1, n2, . . . , nd−1) be a caterpillar obtained from a path Pd+1 by attaching ni

(ni ≥ 0) pendant edges to vi (i = 1, 2, . . . , d−1), where a caterpillar is a tree in which
a removal of all pendant vertices makes a path [16]. Obviously,

∑d−1
i=1 ni = n − d − 1

and T d
n (n1, n2, . . . , nd−1) ∈ T d

n . We have one tree only in T d
n for d = 2 and d = n−1,

namely T 2
n = {K1,n−1} and T n−1

n = {Pn}, where K1,n−1 = T 2
n (n − 3) with n ≥ 3. In

Ref. [7], K1,n−1 is denoted by Xn . Gutman [3] found that the non-branched path Pn

has maximal, and the maximally branched star Xn has minimal energy in Tn .
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(a) (b) (c)

Fig. 1 (a) Q10; (b) H8; (c) Q′
8

For T 3
n (n1, n2), we suppose n1 ≥ n2. For example, the trees Yn , Zn , Dn , and Qn

in Ref. [7] can be re-written as Yn = T 3
n (n − 4, 0) with n ≥ 4, Zn = T 3

n (n − 5, 1)

with n ≥ 6, Dn = T 3
n (n − 6, 2) with n ≥ 8, and Qn = T 3

n (n − 7, 3) with n ≥ 10,
respectively.

For T 4
n (n1, 0, n3), we suppose n1 ≥ n3. For example, the trees Wn and Un in Ref.

[7] can be re-written as Wn = T 4
n (n − 5, 0, 0) with n ≥ 5 and Un = T 4

n (n − 6, 0, 1)

with n ≥ 7, respectively. In addition, the trees Hn and Q′
n in Ref. [7] can be re-writ-

ten as Hn = T 4
n (0, n − 5, 0) with n ≥ 6 and Q′

n = T 4
n (n − 6, 1, 0) with n ≥ 7,

respectively. For example, Q10, H8 and Q′
8 are shown in Fig. 1.

For the sake of conciseness, “the k-th minimal tree” is referred to as “the tree with
k-th minimal energy”. In Tn , Gutman [3] deduced Xn < Yn < Zn < Wn < T for
n ≥ 6, where T �= Xn, Yn, Zn, Wn and T ∈ Tn . Recently, using the quasi-ordering
relation, Li and Li [7] extended Gutman’s result [3] by determining Dn and Un are
the fifth- and sixth-minimal trees in Tn with n ≥ 6 and n ≥ 14, respectively. Li and
Li [7] found two trees Qn and Q′

n and suggested that either Qn or Q′
n is the seventh-

minimal tree in Tn with n ≥ 14. The quasi-ordering relation, however, can not be
used to compare the energies of Qn and Q′

n . By use of a systematic computer-aided
search, Gutman et al. [17] provided a slight correction of the claim in Ref. [7] that Dn

is the fifth one for n ≥ 9 only. By numerical calculation, Gutman et al. [17] claimed,
but did not prove, that Qn is the seventh one for n ≥ 12 and Q′

n is not the seventh
one for any value of n. Gutman et al. [17] listed the first 7 trees for 11 ≥ n ≥ 7 and
all the trees for n = 6 in the increasing order of their minimal energies within Tn . A
rigor mathematical proof for the seventh-minimal tree and further ordering of trees
for n ≥ 7 remain a task.

In this paper, we use a straightforward method to extend Gutman’s [3] and Li and
Li’s [7] results for n ≥ 7. We mathematically prove that Qn is the seventh-minimal
tree for n ≥ 12 and Q′

n is not the seventh one for any value of n. We find that Q′
n is the

twelfth-minimal tree for 7117598 ≥ n ≥ 59. The method employed here is simple,
which makes it easy to find new trees with minimal energy within Tn . Thus we derive
the first 9 trees for a general case with n ≥ 46 and series of trees in the increasing
order of their energies for n ≥ 7. The first 7 trees are consistent with those obtained
by Gutman [3] and Li and Li [7] for n ≥ 7.

2 Preliminaries

For T ∈ Tn , it is consistent to define m(T, 0) = 1 and m(T, k) = 0 for k > n/2. Obvi-
ously, m(T, 1) = n−1. We assume 2 ≤ k ≤ n/2 hereinafter. The trees in Tn can be par-
titioned into two subsets T A

n and T B
n according to the numbers of the k-matchings of the
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2 (a) A9; (b) B9; (c) C9; (d) I9; (e) J10; (f) K9; (g) L9; (h) M9

trees with 3 ≤ k ≤ n/2. For the first subset, T A
n = {Xn, T 3

n (n1, n2), T 4
n (n1, 0, n3)}

where the numbers of the k-matchings with 3 ≤ k ≤ n/2 are zero. Thus, T B
n =

Tn − T A
n .

For simplicity, we introduce some notations for trees in T B
n . Let An = T 5

n (n −
6, 0, 0, 0) with n ≥ 7, Bn = T 5

n (0, n − 6, 0, 0) with n ≥ 7, Cn = T 5
n (n − 7, 0, 0, 1)

with n ≥ 8, In = T 4
n (1, n − 6, 0) with n ≥ 8, Jn = T 4

n (2, n − 7, 0) with n ≥ 10,
Kn = T 4

n (n − 7, 2, 0) with n ≥ 8, and Ln = T 4
n (n − 7, 1, 1) with n ≥ 8. Let Mn be a

tree obtained from P5 by attaching n −7 pendant edges and a path of length two to v2,
where n ≥ 7. For example, A9, B9, C9, I9, J10, K9, L9, and M9 are given in Fig. 2.

To deduce the final results of this paper, Lemmas 1–3 and Conjecture 1 are simply
quoted here from Refs. [1,2,16,18].

Lemma 1 [1] Let e = uv be an edge of a tree T . Then the characteristic polynomial
�(T, x) satisfies

�(T, x) = �(T − e, x) − �(T − u − v, x).

Lemma 2 [2] Let e = uv be an edge of G and k a positive integer. Then we have

m(G, k) = m(G − e, k) + m(G − u − v, k − 1). (6)

Lemma 3 [18] Let d be a positive integer more than one and T a tree with n vertices
having diameter at least d. Then T d

n (n − d − 1, 0, 0, . . . , 0) ⇒ T with equality if and
only if (iff) T = T d

n (n − d − 1, 0, 0, . . . , 0).

Zhou and Li [16] characterized the second-minimal trees in T d
n are T d

n (0, 0, n −
d − 1, 0, . . . , 0) if d ≥ 6, Yn if d = 3, Un or Hn if d = 4 and n ≥ 7, Bn or Cn if
d = 5 and n ≥ 9. Zhou and Li [16] proposed the following conjecture.

Conjecture 1 [16] Un with n ≥ 7 and Bn with n ≥ 9 are the second-minimal trees
in T 4

n and T 5
n , respectively.

Recently, Li and Li [7] showed that Conjecture 1 holds for d = 4. In Sect. 3, we
will prove that Conjecture 1 is also true for d = 5.
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3 Main results

In this section, we assume that T appearing in the last terms of all the inequalities
does not contain the preceding terms and the calculation for comparing the energies
of two trees is directly performed on the basis of (2).

In Lemmas 4–12, we provide the inequalities which can not be proved by the quasi-
ordering relation. However, these inequalities can be obtained by using the theorem
of zero points.

Lemma 4 An ⇀ In for n ≥ 8.

Proof Straightforward derivation by Lemma 1 yields

�(An, x) = xn−6
[
−(n − 5) + (3n − 12)x2 − (n − 1)x4 + x6

]
� xn−6 f1(x),

�(In, x) = xn−6
[
−(2n − 12) + (3n − 13)x2 − (n − 1)x4 + x6

]
� xn−6 f2(x).

It is noted that the exact solutions for the roots of f1(x) = 0 and f2(x) = 0 with
respect to x can be obtained. However, the exact representations for the energies of
An and In are too complex to compare their quantities for an arbitrary n. As it is,
approximate roots of f1(x) = 0 and f2(x) = 0 can be used instead.

Obviously, we have

f1

(√
0.37

)
= 0.747553 − 0.0269n < 0, (n ≥ 28),

f1

(√
0.39

)
= 0.531419 + 0.0179n > 0, (n ≥ 7),

f1

(√
2.58

)
= −2.13009 + 0.0836n > 0, (n ≥ 26),

f1

(√
2.7

)
= −0.427 − 0.19n < 0, (n ≥ 7),

f1

(√
n − 4

)
= 5 − n < 0, (n ≥ 7),

f1

(√
n − 3.9

)
= 0.1(−15.9902 + n)(−4.80983 + n) > 0, (n ≥ 16).

According to the theorem of zero points, we have, for n ≥ 28,

E(An) < 2
(√

0.39 + √
2.7 + √

n − 3.9
)

. (7)
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Obviously, we have

f2

(√
0.92

)
= 1.66509 − 0.0864n < 0, (n ≥ 20),

f2 (1) = 1 > 0, (n ≥ 7),

f2

(√
1.9

)
= −2.231 + 0.09n > 0, (n ≥ 25),

f2

(√
2
)

= −2 < 0, (n ≥ 7),

f2

(√
n − 4

)
= 16 − 3n < 0, (n ≥ 7),

f2

(√
n − 3.9

)
= 0.1(−35.574 + n)(−5.22601 + n) > 0, (n ≥ 36).

According to the theorem of zero points, we have, for n ≥ 36,

2
(√

0.92 + √
1.9 + √

n − 4
)

< E(In). (8)

It follows from
√

0.39 + √
2.7 + √

n − 3.9 <
√

0.92 + √
1.9 + √

n − 4 that the
right-hand side (RHS) of (7) is less than the left-hand side (LHS) of (8) as n ≥ 36.
Therefore, An ⇀ In for n ≥ 36.

The calculation yields An ⇀ In for 35 ≥ n ≥ 8. 
�
Next, we simply provide the necessary equations and inequalities in the proofs for

Lemmas 5–12 since the method involved is similar to that for Lemma 4.

Lemma 5 Bn ⇀ Kn for n ≥ 11 and Kn ⇀ Bn for 10 ≥ n ≥ 8.

Proof Straightforward derivation by Lemma 1 yields

�(Bn, x) = xn−6
[
−(2n − 11) + (3n − 12)x2 − (n − 1)x4 + x6

]
� xn−6 f3(x),

�(Kn, x) = xn−6
[
−(2n − 12) + (4n − 21)x2 − (n − 1)x4 + x6

]
� xn−6 f4(x).

Since

f3

(√
0.97

)
= 1.21357 − 0.0309n < 0, (n ≥ 40),

f3 (1) = 1 > 0, (n ≥ 7),

f3

(√
1.98

)
= −1.07721 + 0.0196n > 0, (n ≥ 55),

f3

(√
2
)

= −1 < 0, (n ≥ 7),

f3

(√
n − 4

)
= 11 − 2n < 0, (n ≥ 6),

f3

(√
n − 3.9

)
= 0.1(−25.4125 + n)(−5.38751 + n) > 0, (n ≥ 26),
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we have, for n ≥ 55,

E(Bn) < 2
(

1 + √
2 + √

n − 3.9
)

. (9)

Since

f4

(√
0.55

)
= 0.918875 − 0.1025n < 0, (n ≥ 9),

f4

(√
0.59

)
= 0.163479 + 0.0119n > 0, (n ≥ 7),

f4

(√
3.3

)
= −10.473 + 0.31n > 0, (n ≥ 34),

f4

(√
3.42

)
= −8.12191 − 0.0164n < 0, (n ≥ 7),

f4

(√
n − 5

)
= 17 − 3n < 0, (n ≥ 7),

f4

(√
n − 4.7

)
= 0.3(−18.0509 + n)(−5.34915 + n) > 0, (n ≥ 19),

we have, for n ≥ 34,

2
(√

0.55 + √
3.3 + √

n − 5
)

< E(Kn). (10)

It follows from 1 + √
2 + √

n − 3.9 <
√

0.55 + √
3.3 + √

n − 5 that the RHS of (9)
is less than the LHS of (10) as n ≥ 55. Therefore, Bn ⇀ Kn for n ≥ 55.

The calculation yields Bn ⇀ Kn for 54 ≥ n ≥ 11 and Kn ⇀ Bn for 10 ≥ n ≥ 8.

�

Lemma 6 Cn ⇀ Mn for n ≥ 8.

Proof Straightforward derivation by Lemma 1 yields

�(Cn, x) = xn−6
[
−(2n − 12) + (4n − 19)x2 − (n − 1)x4 + x6

]
� xn−6 f5(x),

�(Mn, x) = xn−8
[
(n − 7) − (3n − 17)x2 + (3n − 12)x4 − (n − 1)x6 + x8

]

� xn−8 f6(x).

Since

f5

(√
0.55

)
= 2.01887 − 0.1025n < 0, (n ≥ 20),

f5

(√
0.59

)
= 1.34348 + 0.0119n > 0, (n ≥ 8),

f5

(√
3.3

)
= −3.873 + 0.31n > 0, (n ≥ 13),

f5

(√
3.42

)
= −1.28191 − 0.0164n < 0, (n ≥ 8),
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f5

(√
n − 5

)
= 7 − n < 0, (n ≥ 8),

f5

(√
n − 4.9

)
= 0.1(−17.0962 + n)(−6.70385 + n) > 0, (n ≥ 18),

we have, for n ≥ 20,

E(Cn) < 2
(√

0.59 + √
3.42 + √

n − 4.9
)

. (11)

Since

f6

(√
0.94

)
= −0.011867 + 0.000216n > 0, (n ≥ 55),

f6

(√
1 − 1/n

)
= (1 − 5n − 2n2)/n4 < 0, (n ≥ 8),

f6

(√
1 − 2/n

)
= −4(−4 + 10n + n2)/n4 < 0, (n ≥ 8),

f6

(√
1 − 10/n

)
= 100(100 − 50n + 7n2)/n4 > 0, (n ≥ 8),

f6 (1) = 0, (n ≥ 8),

f6

(√
n − 4

)
= −3(−5 + n)2 < 0, (n ≥ 8),

f6

(√
n − 3.9

)
= 0.1(−34.9 + n)(24.01 − 9.8n + n2) > 0, (n ≥ 35),

we have, for n ≥ 55,

2
(√

0.94 + √
1 − 2/n + 1 + √

n − 4
)

< E(Mn). (12)

It follows from
√

0.59 + √
3.42 + √

n − 4.9 <
√

0.94 + √
1 − 2/n + 1 + √

n − 4
that the RHS of (11) is less than the LHS of (12) as n ≥ 55. Therefore, Cn ⇀ Mn for
n ≥ 55.

The calculation yields Cn ⇀ Mn for 54 ≥ n ≥ 8. 
�
Lemma 7 Cn ⇀ Jn for n ≥ 11.

Proof Straightforward derivation by Lemma 1 yields

�(Jn, x) = xn−6
[
−(3n − 21) + (4n − 21)x2 − (n − 1)x4 + x6

]
� xn−6 f7(x).

Since

f7

(√
0.95

)
= 2.80988 − 0.1025n < 0, (n ≥ 40),

f7 (1) = 2 > 0, (n ≥ 10),

f7

(√
2.8

)
= −8.008 + 0.36n > 0, (n ≥ 23),

f7

(√
3
)

= −6 < 0, (n ≥ 10),
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f7

(√
n − 5

)
= 26 − 4n < 0, (n ≥ 10),

f7

(√
n − 4.9

)
= 0.1(−47.4183 + n)(−6.38172 + n) > 0, (n ≥ 48),

we have, for n ≥ 48,

2
(√

0.95 + √
2.8 + √

n − 5
)

< E(Jn). (13)

It follows from
√

0.59 + √
3.42 + √

n − 4.9 <
√

0.95 + √
2.8 + √

n − 5 that the
RHS of (11) is less than the LHS of (13) as n ≥ 48. Therefore, Cn ⇀ Jn for n ≥ 48.

The calculation yields Cn ⇀ Jn for 47 ≥ n ≥ 11. 
�
By Lemma 5, we will show that Conjecture 1 holds for d = 5, as given in Lemma 8.

Lemma 8 Let T ∈ T 5
n . Then An ⇀ Bn ⇀ Cn ⇀ T for n ≥ 9 and An ⇀ Cn ⇀

Bn ⇀ T for n = 8.

Proof By Lemma 3, we have An ⇀ Bn for n ≥ 9 and An ⇀ Cn for n = 8. As
n ≥ 9, Kn ⇀ Cn follows from m(Kn, 2) = 4n − 21 < 4n − 19 = m(Cn, 2),
m(Kn, 3) = m(Cn, 3) = 2n − 12 and m(Kn, k) = m(Cn, k) = 0 with 4 ≤ k ≤ n/2.
Furthermore, by Lemma 5, we have Bn ⇀ Cn for n ≥ 11. The calculation yields
Bn ⇀ Cn for n = 10, 9. Cn ⇀ T for n ≥ 9 was proved by Zhou and Li [16]. The
calculation yields Cn ⇀ Bn ⇀ T for n = 8. In conclusion, Lemma 8 holds. 
�
Lemma 9 T 4

n (n − 7, 0, 2) ⇀ Hn for n ≥ 9.

Proof Straightforward derivation by Lemma 1 yields

�(T 4
n (n − 7, 0, 2), x) = xn−4

[
(4n − 21) − (n − 1)x2 + x4

]
� xn−4 f8(x),

�(Hn, x) = xn−6
[
−(n − 5) + (2n − 7)x2 − (n − 1)x4 + x6

]
� xn−6 f9(x).

Since

f8

(√
3.8

)
= −2.76 + 0.2n > 0, (n ≥ 14),

f8 (2) = −1 < 0, (n ≥ 7),

f8

(√
n − 5

)
= −1 < 0, (n ≥ 7),

f8

(√
n − 4.95

)
= −1.4475 + 0.05n > 0, (n ≥ 29),

we have, for n ≥ 29,

E(T 4
n (n − 7, 0, 2)) < 2

(
2 + √

n − 4.95
)

. (14)
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Since

f9

(√
1 − 3/n

)
= −3(9 − 12n + n2)/n3 < 0, (n ≥ 12), (15)

f9

(√
1 − 1/n

)
= (−1 + 4n + n2)/n3 > 0, (n ≥ 6), (16)

f9(1) = 0, (n ≥ 6), (17)

f9

(√
n − 3

)
= 8 − 2n < 0, (n ≥ 6), (18)

f9

(√
n − 2.9

)
= 0.1(−23.9 + n)(−3.9 + n) > 0, (n ≥ 24), (19)

we have, for n ≥ 24,

2
(√

1 − 3/n + 1 + √
n − 3

)
< E(Hn). (20)

It follows from 2 + √
n − 4.95 <

√
1 − 3/n + 1 + √

n − 3 that the RHS of (14) is
less than the LHS of (20) as n ≥ 29. Therefore, T 4

n (n − 7, 0, 2) ⇀ Hn for n ≥ 29.
The calculation yields T 4

n (n − 7, 0, 2) ⇀ Hn for 28 ≥ n ≥ 9. 
�
Lemma 10 Hn ⇀ T 3

n (n −8, 4) for n ≥ 46 and T 3
n (n −8, 4) ⇀ Hn for 45 ≥ n ≥ 12.

Proof It follows from (15)–(19) that, for n ≥ 24,

E(Hn) < 2
(√

1 − 1/n + 1 + √
n − 2.9

)
. (21)

Straightforward derivation by Lemma 1 yields

�(T 3
n (n − 8, 4), x) = xn−4

[
(5n − 35) − (n − 1)x2 + x4

]
� xn−4 f10(x).

Since

f10

(√
4.86

)
= −6.5204 + 0.14n > 0, (n ≥ 47),

f10

(√
5
)

= −5 < 0, (n ≥ 12),

f10

(√
n − 6

)
= −5 < 0, (n ≥ 12),

f10

(√
n − 5.5

)
= −10.25 + 0.5n > 0, (n ≥ 21),

we have, for n ≥ 47,

2
(√

4.86 + √
n − 6

)
< E(T 3

n (n − 8, 4)). (22)

It follows from
√

1 − 1/n + 1 + √
n − 2.9 <

√
4.86 + √

n − 6 that the RHS of (21)
is less than the LHS of (22) as n ≥ 58. Therefore, Hn ⇀ T 3

n (n − 8, 4) for n ≥ 58.
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The calculation yields Hn ⇀ T 3
n (n − 8, 4) for 57 ≥ n ≥ 46 while T 3

n (n − 8, 4) ⇀

Hn for 45 ≥ n ≥ 12. 
�
Lemma 11 T 4

n (n − 8, 0, 3) ⇀ Q′
n for 7117598 ≥ n ≥ 11.

Proof Straightforward derivation by Lemma 1 yields

�(T 4
n (n − 8, 0, 3), x) = xn−4[(5n − 31) − (n − 1)x2 + x4] � xn−4 f11(x),

�(Q′
n, x) = xn−6[−(n − 5) + (3n − 13)x2 − (n − 1)x4 + x6] � xn−6 f12(x).

Since

f11

(√
4.94

)
= −1.6564 + 0.06n > 0, (n ≥ 28),

f11

(√
5 − 1/10n

)
= (1 − 110n − 90n2)/100n2 < 0, (n ≥ 11),

f11

(√
n − 6

)
= −1 < 0, (n ≥ 11),

f11

(√
n − 5.99

)
= −1.1099 + 0.01n > 0, (n ≥ 111),

we have, for n ≥ 111,

E(T 4
n (n − 8, 0, 3)) < 2

(√
5 − 1/10n + √

n − 5.99
)

. (23)

Since

f12

(√
0.3819

)
= 0.236847 − 0.00014761n < 0, (n ≥ 1605), (24)

f12

(√
0.389

)
= 0.153185 + 0.015679n > 0, (n ≥ 11), (25)

f12

(√
2.617

)
= −4.24929 + 0.002311n > 0, (n ≥ 1839), (26)

f12

(√
2.7

)
= −3.127 − 0.19n < 0, (n ≥ 11), (27)

f12

(√
n − 4

)
= 9 − 2n < 0, (n ≥ 11), (28)

f12

(√
n − 3.9

)
= 0.1(−26.4114 + n)(−4.38864 + n) > 0, (n ≥ 27), (29)

we have, for n ≥ 1839,

2
(√

0.3819 + √
2.617 + √

n − 4
)

< E(Q′
n). (30)

It follows from
√

5 − 1/10n + √
n − 5.99 <

√
0.3819 + √

2.617 + √
n − 4 that

the RHS of (23) is less than the LHS of (30) as 7117598 ≥ n ≥ 1839. Therefore,
T 4

n (n − 8, 0, 3) ⇀ Q′
n for 7117598 ≥ n ≥ 1839.

The calculation yields T 4
n (n − 8, 0, 3) ⇀ Q′

n for 1838 ≥ n ≥ 11. 
�

123



948 J Math Chem (2010) 47:937–958

It should be noted that the theorem of zero points is not applicable for the mathemat-
ical proof of T 4

n (n − 8, 0, 3) ⇀ Q′
n with n ≥ 7117599. However, the calculation and

graphical representation allow us to make a conjecture for n ≥ 7117599 as follows.
A rigorous proof for Conjecture 2 remains a mathematical task for the future.

Conjecture 2 T 4
n (n − 8, 0, 3) ⇀ Q′

n for n ≥ 7117599.

Lemma 12 Q′
n ⇀ T 3

n (n − 9, 5) for n ≥ 59 while T 3
n (n − 9, 5) ⇀ Q′

n for 58 ≥
n ≥ 14.

Proof We have

f12

(√
0.37

)
= 0.377553 − 0.0269n < 0, (n ≥ 14), (31)

f12

(√
2.5

)
= −5.625 + 0.25n > 0, (n ≥ 23). (32)

It follows from (31), (25), (32), and (27)–(29) that, for n ≥ 27,

E(Q′
n) < 2

(√
0.389 + √

2.7 + √
n − 3.9

)
. (33)

Straightforward derivation by Lemma 1 yields

�(T 3
n (n − 9, 5), x) = xn−4

[
(6n − 48) − (n − 1)x2 + x4

]
� xn−4 f13(x).

Since

f13

(√
5.83

)
= −8.1811 + 0.17n > 0, (n ≥ 49),

f13

(√
6
)

= −6 < 0, (n ≥ 7),

f13

(√
n − 7

)
= −6 < 0, (n ≥ 7),

f13

(√
n − 6.5

)
= −12.25 + 0.5n > 0, (n ≥ 25),

we have, for n ≥ 49,

2
(√

5.83 + √
n − 7

)
< E(T 3

n (n − 9, 5)). (34)

It follows from
√

0.389 +√
2.7 +√

n − 3.9 <
√

5.83 +√
n − 7 that the RHS of (33)

is less than the LHS of (34) as n ≥ 116. Therefore, Q′
n ⇀ T 3

n (n − 9, 5) for n ≥ 116.
The calculation yields Q′

n ⇀ T 3
n (n−9, 5) for 115 ≥ n ≥ 59 while T 3

n (n−9, 5) ⇀

Q′
n for 58 ≥ n ≥ 14. 
�
We introduce Property 1 and Lemma 13 to deduce the increasing orders of the trees

in T A
n which are given in Lemmas 14 and 15 for n ≥ 18 and 17 ≥ n ≥ 7, respectively.
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Property 1 Let n ≥ 7. (i) E(T 3
n (n1, n2)) is a monotonously increasing function of

n2. (ii) E(T 4
n (n1, 0, n3)) is a monotonously increasing function of n3.

Proof Since n1 + n2 = n − 4 for T 3
n (n1, n2), we have

m(T 3
n (n1, n2), 2) = (n1 + 1)(n2 + 1) = −n2

2 + (n − 4)n2 + (n − 3). (35)

As 0 ≤ n2 ≤ (n − 4)/2, it follows from (35) that m(T 3
n (n1, n2), 2) is a monotonously

increasing function of n2. Since m(T 3
n (n1, n2), k) = 0 for 3 ≤ k ≤ n/2, Property 1(i)

holds.
Since n1 + n3 = n − 5 for T 4

n (n1, 0, n3), we have

m(T 4
n (n1, 0, n3), 2) = (n1 + 1)(n3 + 2) + (n3 + 1)

= −n2
3 + (n − 5)n3 + (2n − 7). (36)

As 0 ≤ n3 ≤ (n − 5)/2, it follows from (36) that m(T 4
n (n1, 0, n3), 2) is a monoto-

nously increasing function of n3. Since m(T 4
n (n1, 0, n3), k) = 0 for 3 ≤ k ≤ n/2,

Property 1(ii) holds. 
�

Lemma 13 Let n ≥ 12.

(i) If 0 ≤ a ≤ (n − 11)/3, then

T 4
n (n − 5 − a, 0, a) ⇀ T 3

n (n − 6 − a, a + 2) ⇀ T 4
n (n − 6 − a, 0, a + 1)

⇒ T 3
n (n − 7 − a, a + 3)

with equality iff a = (n − 11)/3.
(ii) If (n − 11)/3 < a < (n − 8)/3, then

T 4
n (n − 5 − a, 0, a) ⇀ T 3

n (n − 6 − a, a + 2) ⇀ T 3
n (n − 7 − a, a + 3)

⇀ T 4
n (n − 6 − a, 0, a + 1).

(iii) If (n − 8)/3 ≤ a ≤ (2n − 17)/5, then

T 3
n (n − 6 − a, a + 2) ⇒ T 4

n (n − 5 − a, 0, a) ⇒ T 3
n (n − 7 − a, a + 3)

⇀ T 4
n (n − 6 − a, 0, a + 1).

The first and second equalities hold iff a = (n − 8)/3 and a = (2n − 17)/5,
respectively.

(iv) If a > (2n − 17)/5, then

T 3
n (n − 6 − a, a + 2) ⇀ T 3

n (n − 7 − a, a + 3) ⇀ T 4
n (n − 5 − a, 0, a)

⇀ T 4
n (n − 6 − a, 0, a + 1).
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Proof It is obvious that, for 3 ≤ k ≤ n/2, the k-matchings for the trees considered in
Lemma 13 are zero. Next we compare the numbers of their 2-matchings. By (35) and
(36), we deduce

m(T 4
n (n − 5 − a, 0, a), 2) − m(T 3

n (n − 6 − a, a + 2), 2) = 3a − (n − 8), (37)

m(T 3
n (n − 6 − a, a + 2), 2) − m(T 4

n (n − 6 − a, 0, a + 1), 2) = −(a + 2), (38)

m(T 4
n (n−6 − a, 0, a+1), 2)−m(T 3

n (n−7 − a, a + 3), 2)=3a − (n−11), (39)

m(T 4
n (n−5 − a, 0, a), 2)−m(T 3

n (n−7 − a, a + 3), 2) = 5a − (2n−17). (40)

As 0 ≤ a ≤ (n − 11)/3, by (37)–(39), we have Lemma 13(i).
As (n − 11)/3 < a < (n − 8)/3, by (37), Property 1(i) and (39), we have

Lemma 13(ii).
As (n − 8)/3 ≤ a ≤ (2n − 17)/5, by (37), (40) and (39), we have Lemma 13(iii).
As a > (2n − 17)/5, by Property 1(i), (40) and Property 1(ii), we have

Lemma 13(iv). 
�
Lemma 13 shows that T 3

n (n1, n2) and T 4
n (n1, 0, n3) are staggered in the increasing

order of their energies.
Obviously, the k-matchings with 3 ≤ k ≤ n/2 for Xn , Yn , Zn , Wn , Dn , and Un

are zero. For n ≥ 7, we deduce m(Xn, 2) = 0 < m(Yn, 2) = n − 3 < 2n − 8 =
m(Zn, 2) < m(Wn, 2) = 2n − 7 ≤ 3n − 15 = m(Dn, 2) < 3n − 13 = m(Un, 2).
This inequality still holds without “≤ 3n − 15 = m(Dn, 2)” for n = 7. Therefore, we
have

Xn ⇀ Yn ⇀ Zn ⇀ Wn ⇒ Dn ⇀ Un, (n ≥ 8), (41)

Xn ⇀ Yn ⇀ Zn ⇀ Wn ⇀ Un, (n = 7). (42)

The equality in (41) holds iff n = 8. The inequalities in (42) and (41) were also
reported by Gutman [3] and Li and Li [7]. For the sake of conciseness, the symbols
(∇) and () denote hereinafter (41) and Xn ⇀ Yn ⇀ Zn ⇀ Wn ⇀ Dn , respectively.

As n ≥ 14 and a = 1 ≤ (n − 11)/3, by Lemma 13(i), we get Un ⇀ Qn ⇀

T 4
n (n − 7, 0, 2) ⇒ T 3

n (n − 8, 4) with equality iff n = 14. For the sake of conciseness,
the inequalities

(∇) ⇀ Qn ⇀ T 4
n (n − 7, 0, 2), (n ≥ 14), (43)

(∇) ⇀ Qn ⇀ T 4
n (n − 7, 0, 2) ⇒ T 3

n (n − 8, 4), (n ≥ 14) (44)

are hereinafter denoted by the symbols (♦) and (⊥), respectively.

Lemma 14 Let T ∈ T A
n with n ≥ 18, we have

(⊥) ⇀ T 4
n (n − 8, 0, 3) ⇀ T 3

n (n − 9, 5) ⇀ T . (45)

Proof As n ≥ 18 and a = 2 < (n − 11)/3, by Lemma 13(i), we have the first
and second inequalities in (45). By Property 1(i), we obtain T 3

n (n − 9, 5) ⇀ T for
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T = T 3
n (n1, n2) with n2 ≥ 6. Since m(T 3

n (n − 9, 5), 2) = 6n − 48 < 6n − 43 =
m(T 4

n (n − 9, 0, 4), 2) and m(T 3
n (n − 9, 5), k) = m(T 4

n (n − 9, 0, 4), k) = 0 for
3 ≤ k ≤ n/2, we get T 3

n (n − 9, 5) ⇀ T 4
n (n − 9, 0, 4). Furthermore, by Property 1(ii),

we obtain T 3
n (n − 9, 5) ⇀ T for T = T 4

n (n1, 0, n3) with n3 ≥ 4. In conclusion,
T 3

n (n − 9, 5) ⇀ T holds for T ∈ T A
n . 
�

Lemma 15 The increasing order by their energies of all the trees in T A
n are

(⊥) ⇀ T 4
n (n − 8, 0, 3) � T 3

n (n − 9, 5) ⇀ T 3
n (n − 10, 6) ⇀ T 4

n (n − 9, 0, 4)

⇀ T 4
n (n − 10, 0, 5) ⇀ T 4

n (n − 11, 0, 6), (n = 17), (46)

(⊥) ⇀ T 3
n (n − 9, 5) ⇀ T 4

n (n − 8, 0, 3) � T 3
n (n − 10, 6) ⇀ T 4

n (n − 9, 0, 4)

⇀ T 4
n (n − 10, 0, 5), (n = 16), (47)

(⊥) ⇀ T 3
n (n − 9, 5) ⇀ T 4

n (n − 8, 0, 3) ⇀ T 4
n (n − 9, 0, 4)

⇀ T 4
n (n − 10, 0, 5), (n = 15), (48)

(⊥) ⇀ T 3
n (n − 9, 5) ⇀ T 4

n (n − 8, 0, 3)

⇀ T 4
n (n − 9, 0, 4), (n = 14), (49)

(∇) ⇀ Qn ⇀ T 3
n (n − 8, 4) ⇀ T 4

n (n − 7, 0, 2) ⇀ T 4
n (n − 8, 0, 3)

⇀ T 4
n (n − 9, 0, 4), (n = 13), (50)

(∇)⇀ Qn ⇀T 3
n (n−8, 4)⇀T 4

n (n−7, 0, 2) ⇀ T 4
n (n − 8, 0, 3), (n =12), (51)

(∇) � Qn ⇀ T 4
n (n − 7, 0, 2)

⇀ T 4
n (n − 8, 0, 3), (n = 11), (52)

() ⇀ Qn ⇀ Un ⇀ T 4
n (n − 7, 0, 2), (n = 10), (53)

(∇) ⇀ T 4
n (n − 7, 0, 2), (n = 9). (54)

Proof Let n = 17. As a = 2 = (n − 11)/3, by Lemma 13(i), we get the first
inequalities and the equality in (46). As a = 3 = (n − 8)/3, by Lemma 13(iii), we
get the second and third inequalities in (46). By Property 1(ii), we have the remaining
inequalities in (46).

Let n = 16. As (n − 11)/3 < a = 2 < (n − 8)/3, by Lemma 13(ii), we get the
first and second inequalities in (47). As a = 3 = (2n − 17)/5, by Lemma 13(iii), we
get the equality and the third inequality in (47). By Property 1(ii), we have the last
inequality in (47).

Let n = 15. As (n −11)/3 < a = 2 < (n −8)/3, by Lemma 13(ii), we get the first
and second inequalities in (48). By Property 1(ii), we have the remaining inequalities
in (48).

Let n = 14. As a = 2 = (n − 8)/3, by Lemma 13(iii), we get the first and second
inequalities in (49). By Property 1(ii), we have the last inequality in (49).

Let n = 13, 12. As (n − 11)/3 < a = 1 < (n − 8)/3, by Lemma 13(ii), we get the
first to the third inequalities in (50) and (51). By Property 1(ii), we have the remaining
inequalities in (50) and (51).

Since m(Dn, 2) = 3n −15, m(Un, 2) = 3n −13, m(Qn, 2) = 4n −24, m(T 4
n (n −

7, 0, 2), 2) = 4n − 21, m(T 4
n (n − 8, 0, 3), 2) = 5n − 31, we deduce m(Un, 2) =

m(Qn, 2) < m(T 4
n (n − 7, 0, 2), 2) < m(T 4

n (n − 8, 0, 3), 2) for n = 11 and
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m(Dn, 2) < m(Qn, 2) < m(Un, 2) < m(T 4
n (n − 7, 0, 2), 2) for n = 10. Further-

more, the k-matchings for Dn, Un, Qn, T 4
n (n − 7, 0, 2), and T 4

n (n − 8, 0, 3) are zero
for 3 ≤ k ≤ n/2. Therefore, we obtain (52) and (53).

Let n = 9. By Property 1(ii), we get (54). 
�

We introduce Lemmas 16–18 to deduce the increasing order of the trees in T B
n with

n ≥ 7 which is given in Lemma 19.
Let D4

n(n1; n2 − 2p, p; n3) be a tree obtained from P5 by attaching n1 and n3
pendant edges to v1 and v3, respectively, and then attaching p paths of length two
and n2 − 2p pendant edges to v2, where n1 + n2 + n3 = n − 5, n1 ≥ n3, 0 ≤
n2 ≤ n − 5 and 0 ≤ p ≤ [n2/2]. Obviously, the trees in T 4

n are represented by
D4

n(n1; n2 − 2p, p; n3). If p = 0, then D4
n(n1; n2 − 2p, p; n3) = T 4

n (n1, n2, n3). If
n2 = 0, then T 4

n (n1, n2, n3) ∈ T A
n . If n2 �= 0, then D4

n(n1; n2 − 2p, p; n3) ∈ T B
n .

For example, D4
n(0; 2, 1; 0) = M9. For D4

n(n1; n2 − 2p, p; n3), we simply quote
Lemma 16 presented by Gutman and Zhang [4].

Lemma 16 [4] Let q = n − 5 − n2 with n2 ≤ n − 5. Then D4
n(q; n2 − 2p, p; 0) ⇀

D4
n(q −1; n2 −2p, p; 1) ⇀ D4

n(q −2; n2 −2p, p; 2) ⇀ · · · ⇀ D4
n(q −[q/2]; n2 −

2p, p; [q/2]).

Lemma 17 D4
n(n1; n2 − 2p, p; n3) ⇀ D4

n(n1; n2 − 2p − 2, p + 1; n3) with n2 ≥ 2
and 0 ≤ p ≤ [n2/2].

Proof Let the pendant edge attached at v2 of T 4
n (n1, n2, n3) and the pendant edge of

a path of length two attached at v2 of D4
n(n1; n2 − 2, 1; n3) be the edge e in (6). It

follows from Lemma 2 that

m(T 4
n (n1, n2, n3), k) = m(T 4

n (n1, n2 − 1, n3), k)

+ m(K1,n1+1 ∪ K1,n3+1, k − 1), (55)

m(D4
n(n1; n2 − 2, 1; n3), k) = m(T 4

n (n1, n2 − 1, n3), k)

+ m(T 4
n (n1, n2 − 2, n3), k − 1). (56)

Since K1,n1+1 ∪ K1,n3+1 is a subgraph of T 4
n (n1, n2 − 2, n3), we have m(K1,n1+1 ∪

K1,n3+1, k−1) ≤ m(T 4
n (n1, n2−2, n3), k−1) where the equality does not hold for all

values of k. For example, m(K1,n1+1∪K1,n3+1, 1) = n1+n3+2 < n1+n2+n3+2 =
m(T 4

n (n1, n2 −2, n3), 1) since n2 ≥ 2. By comparing (55) with (56), we have Lemma
17 for p = 0. By recursion, Lemma 17 holds for 1 ≤ p ≤ [n2/2]. 
�

Since m(Cn, 2) = 4n − 19, m(Cn, 3) = 2n − 12 and m(Cn, k) = 0 with 4 ≤ k ≤
n/2, we have Lemma 18.

Lemma 18 Let T ∈ Tn. If m(T, 2) ≥ 4n −19 and m(T, 3) ≥ 2n −12, then Cn ⇒ T ,
with equality iff the equalities in the two conditions hold simultaneously and m(T, k) =
0 with 4 ≤ k ≤ n/2.
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Lemma 19 For T ∈ T B
n , we have

Hn ⇀ Q′
n ⇀ An ⇀ In ⇀ Bn ⇀ Kn ⇀ Ln ⇀ Cn ⇀ T, (n ≥ 11), (57)

Hn ⇀ Q′
n ⇀ An ⇀ In ⇀ Kn ⇀ Bn ⇀ Ln ⇀ Jn ⇀ Cn ⇀ T, (n = 10), (58)

Hn ⇀ Q′
n ⇀ An ⇀ In ⇀ Kn ⇀ Ln ⇀ Bn ⇀ Cn ⇀ T, (n = 9), (59)

Hn ⇀ Q′
n ⇀ An ⇀ In ⇀ Ln ⇀ Cn ⇀ T, (n = 8), (60)

Hn ⇀ Q′
n ⇀ An ⇀ Bn ⇀ Mn ⇀ Pn, (n = 7). (61)

Proof As n ≥ 7, it follows from m(Hn, 2) = 2n − 7 < 3n − 13 = m(Q′
n, 2) <

m(An, 2) = 3n − 12, m(Hn, 3) = m(Q′
n, 3) = m(An, 3) = n − 5 and m(Hn, k) =

m(Q′
n, k) = m(An, k) = 0 with 4 ≤ k ≤ n/2 that Hn ⇀ Q′

n ⇀ An in (57)–(61)
holds. By Lemma 4, we have An ⇀ In in (57)–(60).

As n ≥ 7, it follows from m(In, 2) = 3n − 13 < 3n − 12 = m(Bn, 2), m(In, 3) =
2n − 12 < 2n − 11 = m(Bn, 3) and m(In, k) = m(Bn, k) with 4 ≤ k ≤ n/2 that

In ⇀ Bn, (n ≥ 7). (62)

As n ≥ 8, it follows from m(Kn, 2) = 4n−21 < 4n−20 = m(Ln, 2) < 4n−19 =
m(Cn, 2), m(Kn, 3) = m(Ln, 3) = m(Cn, 3) = 2n−12 and m(Kn, k) = m(Ln, k) =
m(Cn, k) = 0 with 4 ≤ k ≤ n/2 that

Kn ⇀ Ln ⇀ Cn, (n ≥ 8). (63)

As n ≥ 11, by (62), Lemma 5 and (63), we deduce In ⇀ Bn ⇀ Kn ⇀ Ln ⇀ Cn

in (57).
As n = 10 and n = 9, the calculation yields In ⇀ Kn ⇀ Bn ⇀ Ln ⇀ Jn ⇀ Cn

in (58) and In ⇀ Kn ⇀ Ln ⇀ Bn ⇀ Cn in (59), respectively.
As n = 8, by (63), we have In ⇀ Ln ⇀ Cn in (60) since I8 and K8 are identical.
As n = 7, Lemma 3 and the calculation yield An ⇀ Bn ⇀ Mn ⇀ Pn in (61).
Next, we prove the last inequality Cn ⇀ T in (57)–(60).
Since m(T 6

n (n − 7, 0, 0, 0, 0), 2) = 4n − 18 > 4n − 19 and m(T 6
n (n −

7, 0, 0, 0, 0), 3) = 3n − 17 > 2n − 12 for n ≥ 8, by Lemma 18, we have
Cn ⇀ T 6

n (n − 7, 0, 0, 0, 0) for n ≥ 7. Therefore, by Lemma 3, we deduce Cn ⇀ T
for T ∈ T d

n with d ≥ 6 and n ≥ 8. By Lemma 8, we have Cn ⇀ T for T ∈ T 5
n

with n ≥ 8. Next, we prove Cn ⇀ T for T ∈ T 4
n with n ≥ 8. Since T ∈ T B

n , we
have 1 ≤ n2 ≤ n − 5. Let n1 + n3 = r , then 0 ≤ r ≤ n − 6. We consider six cases
according to the values of r as follows.

Case (i) r = 0, namely T = D4
n(0; n − 5 − 2p, p; 0).

Since T �= Hn , we have 1 ≤ p ≤ [(n − 5)/2] with n ≥ 8. Obviously, Mn =
D4

n(0; n −7, 1; 0). By Lemma 17, we get Mn ⇒ T . By Lemma 6, we deduce Cn ⇀ T
in (57)–(60).

Case (ii) r = 1, namely T = D4
n(1; n − 6 − 2p, p; 0).
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Since T �= In , we have 1 ≤ p ≤ [(n − 6)/2] with n ≥ 8. By Lemma 17, we get
D4

n(1; n − 8, 1; 0) ⇒ T . Since m(D4
n(1; n − 8, 1; 0), 2) = 4n − 19 and m(D4

n(1; n −
8, 1; 0), 3) = 5n − 33 > 2n − 12 for n ≥ 8, by Lemma 18, we have Cn ⇀

D4
n(1; n − 8, 1; 0) with n ≥ 8. Therefore, Cn ⇀ T in (57)–(60) holds.

Case (iii) r = 2, namely T = D4
n(2 − n3; n − 7 − 2p, p; n3), where 0 ≤ p ≤

[(n − 7)/2] and n ≥ 8.

As n ≥ 11, by Lemmas 16 and 17, we get Jn ⇒ T . By Lemma 7, we deduce Cn ⇀

T in (57). As n = 10, 9, the calculation yields Cn ⇀ T in (58)–(59). As n = 8, there
are only two trees Q′

8 and L8. Therefore, it is uncesessary to prove Cn ⇀ T in (60).

Case (iv) 3 ≤ r ≤ n − 8, namely T = D4
n(r − n3; n − 5 − r − 2p, p; n3), where

0 ≤ p ≤ [(n − 5 − r)/2] and n ≥ 11.

By Lemmas 16 and 17, we get T 4
n (r, n−5−r, 0) ⇒ T . As n = 11, Cn ⇀ T in (57)

holds from r = 3 and the calculation yields Cn ⇀ T 4
n (3, 3, 0). As n ≥ 12, we have

m(T 4
n (r, n − 5 − r, 0), 2) = −r2 + (n − 5)r + (2n − 7) ≥ 5n − 31 ≥ 4n − 19,

m(T 4
n (r, n − r − 5, 0), 3) = (r + 1)(n − 5 − r) ≥ 3(n − 7) > 2n − 12.

By Lemma 18, we have Cn ⇀ T 4
n (r, n − 5 − r, 0). Therefore, Cn ⇀ T in (57)

holds for n ≥ 12.

Case (v) r = n − 7, namely T = T 4
n (n − 7 − n3, 2, n3) or T = D4

n(n − 7 −
n3; 0, 1; n3).

Let T = T 4
n (n − 7 − n3, 2, n3). Since T �= Kn , we have 1 ≤ n3 ≤ (n − 7)/2

with n ≥ 9. As n ≥ 10, by Lemma 16, we get T 4
n (n − 8, 2, 1) ⇒ T . Since

m(T 4
n (n − 8, 2, 1), 2) = 5n − 29 ≥ 4n − 19 and m(T 4

n (n − 8, 2, 1), 3) = 4n − 28 >

2n − 12 for n ≥ 10, by Lemma 18, we obtain Cn ⇀ T 4
n (n − 8, 2, 1) with n ≥ 10.

Therefore, Cn ⇀ T in (57)–(58) holds. As n = 9, T = T 4
n (1, 2, 1) and the calculation

yields Cn ⇀ T 4
n (1, 2, 1). Thus Cn ⇀ T in (59) holds.

Let T = D4
n(n − 7 − n3; 0, 1; n3) and n ≥ 8. By Lemma 16, we have

D4
n(n − 7; 0, 1; 0) ⇒ T . Since m(D4

n(n − 7; 0, 1; 0), 2) = 4n − 19 and m(D4
n(n −

7; 0, 1; 0), 3) = 3n − 17 > 2n − 12 for n ≥ 8, by Lemma 18, we obtain
Cn ⇀ D4

n(n − 7; 0, 1; 0) with n ≥ 8. Therefore, Cn ⇀ T in (57)–(60) holds.

Case (vi) r = n − 6, namely T = T 4
n (n − 6 − n3, 1, n3).

Since T �= Q′
n, Ln , we have 2 ≤ n3 ≤ (n − 6)/2 with n ≥ 10. By Lemma 16,

we get T 4
n (n − 8, 1, 2) ⇒ T . Since m(T 4

n (n − 8, 1, 2), 2) = 5n − 29 ≥ 4n − 19 and
m(T 4

n (n − 8, 1, 2), 3) = 3n − 21 > 2n − 12 for n ≥ 10, by Lemma 18, we obtain
Cn ⇀ T 4

n (n − 8, 1, 2) with n ≥ 10. Therefore, Cn ⇀ T in (57)–(58) holds. 
�
By Lemmas 9, 10, 14, and 19, we deduce the first 9 trees with minimal energies in

Tn for n ≥ 46 in Theorem 1.

Theorem 1 Let T ∈ Tn. We have (♦) ⇀ Hn ⇀ T for n ≥ 46.
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Proof By Lemma 9, we have T 4
n (n − 7, 0, 2) ⇀ Hn as n ≥ 14. By Lemmas 10 and

14, we get Hn ⇀ T for T ∈ T A
n with n ≥ 46. By Lemma 19, we have Hn ⇀ T for

T ∈ T B
n with n ≥ 7. 
�

By the aforementioned lemmas and the calculation, we derive the first 12 and
11 trees in the increasing order according to their minimal energies within Tn for
7117598 ≥ n ≥ 26 and 25 ≥ n ≥ 18, respectively, as given in Theorem 2.

Theorem 2 Let T ∈ Tn, we have

(♦) ⇀ Hn ⇀ T 3
n (n − 8, 4) ⇀ T 4

n (n − 8, 0, 3) ⇀ Q′
n

⇀ T, (7117598 ≥ n ≥ 59), (64)

(♦) ⇀ Hn ⇀ T 3
n (n − 8, 4) ⇀ T 4

n (n − 8, 0, 3) ⇀ T 3
n (n − 9, 5)

⇀ T, (58 ≥ n ≥ 46), (65)

(♦) ⇀ T 3
n (n − 8, 4) ⇀ Hn ⇀ T 4

n (n − 8, 0, 3) ⇀ T 3
n (n − 9, 5)

⇀ T, (45 ≥ n ≥ 40), (66)

(♦) ⇀ T 3
n (n − 8, 4) ⇀ T 4

n (n − 8, 0, 3) ⇀ Hn ⇀ T 3
n (n − 9, 5)

⇀ T, (39 ≥ n ≥ 26), (67)

(♦) ⇀ T 3
n (n − 8, 4) ⇀ T 4

n (n − 8, 0, 3) ⇀ T 3
n (n − 9, 5)

⇀ T, (25 ≥ n ≥ 18). (68)

Proof By Lemmas 9, 10, 14, and 11, we have the first to the fourth inequalities in (64).
By Lemmas 9, 10 and 14, we have the first to the fourth inequalities in (65).
The calculation yields Hn ⇀ T 4

n (n − 8, 0, 3) for 45 ≥ n ≥ 40. By Lemmas 14 and
10, we have the first to the fourth inequalities in (66).

The calculation yields T 4
n (n − 8, 0, 3) ⇀ Hn ⇀ T 3

n (n − 9, 5) for 39 ≥ n ≥ 26.
By Lemma 14, we have the first to the fourth inequalities in (67).

By Lemma 14, we have the first to the third inequalities in (68).
Next, we prove the last inequalities in (64)–(68). By Lemmas 12 and 14, we deduce

Q′
n ⇀ T in (64) for T ∈ T A

n . By Lemma 19, we get Q′
n ⇀ T in (64) for T ∈ T B

n .
By Lemma 14, we have T 3

n (n − 9, 5) ⇀ T in (65)–(68) for T ∈ T A
n . By Lemmas 12

and 19, we obtain T 3
n (n − 9, 5) ⇀ T in (65)–(67) for T ∈ T B

n . The calculation
yields T 3

n (n − 9, 5) ⇀ Hn for 25 ≥ n ≥ 18. Therefore, by Lemma 19, we have
T 3

n (n − 9, 5) ⇀ T in (68) for T ∈ T B
n . 
�

It can be seen from Theorems 1 and 2 that the diameters of the trees with minimal
energies obtained in Tn are less than 5 as n ≥ 18. We conclude that the seventh-mini-
mal tree in Tn is Qn for n ≥ 18. Theorem 2 shows that Q′

n is the twelfth-minimal tree
in Tn for 7117598 ≥ n ≥ 59 and Q′

n is not the seventh in Tn for 58 ≥ n ≥ 18.
From Conjecture 2 and the proof for (64), we suggest Conjecture 3.

Conjecture 3 (♦) ⇀ Hn ⇀ T 3
n (n − 8, 4) ⇀ T 4

n (n − 8, 0, 3) ⇀ Q′
n ⇀ T for

n ≥ 7117599.
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The calculation yields T 4
n (n − 11, 0, 6) ⇀ Hn for n = 17, T 4

n (n − 10, 0, 5) ⇀ Hn

for n = 16, 15, T 4
n (n − 9, 0, 4) ⇀ Hn for n = 14, 13, T 4

n (n − 8, 0, 3) ⇀ Hn for
n = 12, 11, T 4

n (n − 7, 0, 2) ⇀ Hn for n = 10, 9, and Un ⇀ Hn for n = 8, 7. In con-
clusion, the energies of the last trees in (46)–(54) and (41)–(42) are less than E(Hn).
Namely, the maximal energy for the trees in T A

n is less than the minimal energy for the
trees in T B

n . It should be noted that all the trees in T A
n for n = 8 and n = 7 are those

in (41) and (42), respectively. Therefore, from Lemmas 15, 19 and the calculation, we
have Theorem 3.

Theorem 3 Let T ∈ Tn. The increasing orders by their energies of the trees in Tn for
17 ≥ n ≥ 7 are the inequalities obtained by connecting the last terms in (46)–(54)
and (41)–(42) with the first terms in (57)–(61).

Theorem 3 shows that the diameters of the trees with minimal energies obtained in
Tn are less than 6 as 17 ≥ n ≥ 8. It can be seen from Theorem 3 that the seventh-
minimal tree is Qn for 17 ≥ n ≥ 12 and Q′

n is not the seventh one for 17 ≥ n ≥ 7.
By Lemma 13, we can deduce the increasing orders in terms of their minimal ener-

gies for the trees in T A
n with n ≥ 18. Furthermore, by Lemma 19 and the calculation,

we can derive more than 12 trees for 7117598 ≥ n ≥ 26 and more than 11 trees for
25 ≥ n ≥ 18 in the increasing order in Tn . However, the further series trees have no
common ordering as 7117598 ≥ n ≥ 18. We list the first 25 trees for n = 58 in (69)
as an example. Let T ∈ T58. We have

(⊥) ⇀ Hn ⇀ T 4
n (n − 8, 0, 3) ⇀ T 3

n (n − 9, 5) ⇀ Q′
n ⇀ An

⇀ T 4
n (n − 9, 0, 4) ⇀ T 3

n (n − 10, 6) ⇀ T 4
n (n − 10, 0, 5) ⇀ In ⇀ Bn

⇀ T 3
n (n − 11, 7)⇀T 4

n (n − 11, 0, 6) ⇀ Kn ⇀ Ln ⇀ Cn ⇀ T . (69)

Proof of (69) First, we prove

(⊥) ⇀ T 4
n (n − 8, 0, 3) ⇀ T 3

n (n − 9, 5) ⇀ T 4
n (n − 9, 0, 4) ⇀ T 3

n (n − 10, 6)

⇀ T 4
n (n − 10, 0, 5) ⇀ T 3

n (n − 11, 7) ⇀ T 4
n (n − 11, 0, 6) ⇀ T 3

n (n − 12, 8)

⇀ T (70)

for T ∈ T A
n . As n = 58 and 2 ≤ a ≤ 6 < (n−11)/3, by Lemma 13(i), we have the first

to the eighth inequalities in (70). By the method similar to that for T 3
n (n − 9, 5) ⇀ T

in (45) with T ∈ T A
n , we deduce T 3

n (n − 12, 8) ⇀ T in (70) for T ∈ T A
n .

As n = 58, the calculation yields T 3
n (n − 8, 4) ⇀ Hn ⇀ T 4

n (n − 8, 0, 3), T 3
n (n −

9, 5) ⇀ Q′
n ⇀ An ⇀ T 4

n (n−9, 0, 4), T 4
n (n−10, 0, 5) ⇀ In ⇀ Bn ⇀ T 3

n (n−11, 7),
T 4

n (n − 11, 0, 6) ⇀ Kn , and Cn ⇀ T 3
n (n − 12, 8). By comparing (70) with (57), we

have the first to the fifteenth inequalities in (69). From (70) and Cn ⇀ T 3
n (n − 12, 8),

we get Cn ⇀ T in (69) for T ∈ T A
58. From (57), we have Cn ⇀ T in (69) for T ∈ T B

58.

�
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4 Conclusions

Using the quasi-ordering relation and the theorem of zero points, we studied the order-
ing of the trees in terms of their minimal energies. We provided the preceding trees
in the increasing order of their energies within the set of the trees with n vertices.
In Theorem 1, we deduced the first 9 trees for n ≥ 46. In Theorem 2, we deduced
the first 12 and 11 trees for 7117598 ≥ n ≥ 26 and 25 ≥ n ≥ 18, respectively. In
Theorem 3, we listed the first n + 6, 17, 15, and 12 trees for 17 ≥ n ≥ 11, n = 10,
n = 9 and n = 8, respectively, and derived all the 11 trees in the increasing order of
their energies for n = 7. The numbers of the trees obtained exceed Gutman’s [3] and
Li and Li’s results [7]. The further ordering for n ≥ 7117598 is beyond the method
presented here and a new approach should be devised in the future work.

The results obtained here are in agreement with a generally accepted idea that the
energy of trees increases as the extent of branching decreases [19]. For the trees under
consideration, the ones with smaller diameters have smaller energies. The maximal
diameters of the trees with minimal energies obtained here are 4 for n ≥ 18 and 5 for
17 ≥ n ≥ 8, respectively.
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