Ordering of the trees by minimal energies

Wen-Huan Wang • Li-Ying Kang

Received: 7 May 2009 / Accepted: 3 October 2009 / Published online: 24 October 2009
© Springer Science+Business Media, LLC 2009

Abstract

The ordering of the trees with n vertices according to their minimal energies is investigated by means of a quasi-ordering relation and the theorem of zero points. We deduce the first 9 trees for a general case with $n \geq 46$. We obtain the first $12,11, n+6,17,15$, and 12 trees for $7117598 \geq n \geq 26,25 \geq n \geq 18,17 \geq n \geq 11$, $n=10, n=9$, and $n=8$, respectively. For $n=7$, we list all the trees in the increasing order of their energies. The maximal diameters of the trees with minimal energies obtained here are 4 for $n \geq 18$ and 5 for $17 \geq n \geq 8$, respectively. For the trees under consideration, the ones with smaller diameters have smaller energies. In addition, we in part prove a conjecture proposed by Zhou and Li (J. Math. Chem. 39:465-473, 2006).

Keywords Trees • Matching • Ordering • Minimal energy

1 Introduction

Let T be a tree with n vertices and $A(T)$ its adjacent matrix. The characteristic polynomial of T is [1]

$$
\begin{equation*}
\phi(T, x)=\operatorname{det}[x \mathbf{I}-A(T)]=\sum_{i=0}^{n} a_{i} x^{n-i}=\sum_{k=0}^{[n / 2]}(-1)^{k} m(T, k) x^{n-2 k}, \tag{1}
\end{equation*}
$$

where \mathbf{I} is the unit matrix of order $n, a_{0}, a_{1}, \ldots, a_{n}$ are the coefficients of the characteristic polynomial of T and $m(T, k)$ is the number of k-matchings in T. The n

[^0]roots of $\phi(T, x)=0$ are denoted by $\lambda_{1}, \ldots, \lambda_{n}$, which are the eigenvalues of the corresponding graph T.

As is well known, the experimental heats due to the formation of conjugated hydrocarbons are closely connected to the total π-electron energy. The total energy $E(T)$ of all π-electrons in conjugated hydrocarbons, within the framework of Hückel molecular orbital (HMO) approximation [1,2], can be reduced to

$$
\begin{equation*}
E(T)=\sum_{i=1}^{n}\left|\lambda_{i}\right| . \tag{2}
\end{equation*}
$$

$E(T)$ can also be expressed as the Coulson integral formula [2, p. 141]

$$
\begin{equation*}
E(T)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left[1+\sum_{k=1}^{[n / 2]} m(T, k) x^{2 k}\right] \mathrm{d} x . \tag{3}
\end{equation*}
$$

The fact that $E(T)$ is a strictly monotonously increasing function of $m(T, k)$ provides us a useful way to compare the energies of the trees under consideration.

For two trees T_{1} and T_{2}, Gutman and Zhang [3,4] introduced a quasi-ordering relation as follows

$$
\begin{equation*}
m\left(T_{1}, k\right) \leq m\left(T_{2}, k\right) \Longleftrightarrow T_{1} \leq T_{2} . \tag{4}
\end{equation*}
$$

Furthermore, if $m\left(T_{1}, k\right)<m\left(T_{2}, k\right)$ for an arbitrary k, we have $T_{1}<T_{2}$. If neither $T_{1}<T_{2}$ nor $T_{1}>T_{2}$, we say that T_{1} and T_{2} are incomparable. According to (3), we have $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ and $E\left(T_{1}\right)<E\left(T_{2}\right)$ from $T_{1} \leq T_{2}$ and $T_{1}<T_{2}$, respectively. For the sake of conciseness, we introduce the symbols " \rightharpoonup ", " \rightleftharpoons " and " $\rightrightarrows "$ as follows:

$$
\begin{align*}
& E\left(T_{1}\right)<E\left(T_{2}\right) \Longleftrightarrow T_{1} \rightharpoonup T_{2}, \quad E\left(T_{1}\right)=E\left(T_{2}\right) \Longleftrightarrow T_{1} \rightleftharpoons T_{2}, \\
& E\left(T_{1}\right) \leq E\left(T_{2}\right) \Longleftrightarrow T_{1} \rightrightarrows T_{2} . \tag{5}
\end{align*}
$$

Based on the above method of quasi-ordering, a number of results have been reached for the ordering of graphs with extremal energies. For example, acyclic [3-9], unicyclic [10-13], bicyclic [14] and tricyclic [15] graphs were considered.

We denote by \mathcal{T}_{n} the set of trees with n vertices and by \mathcal{T}_{n}^{d} the subset of \mathcal{T}_{n} in which the trees have diameter d with $2 \leq d \leq n-1$. Let P_{n} be a path with n vertices and the vertices of P_{n} are labelled consecutively by $v_{0}, v_{1}, \ldots, v_{n-1}$. Let $T_{n}^{d}\left(n_{1}, n_{2}, \ldots, n_{d-1}\right)$ be a caterpillar obtained from a path P_{d+1} by attaching n_{i} ($n_{i} \geq 0$) pendant edges to $v_{i}(i=1,2, \ldots, d-1)$, where a caterpillar is a tree in which a removal of all pendant vertices makes a path [16]. Obviously, $\sum_{i=1}^{d-1} n_{i}=n-d-1$ and $T_{n}^{d}\left(n_{1}, n_{2}, \ldots, n_{d-1}\right) \in \mathcal{T}_{n}^{d}$. We have one tree only in \mathcal{T}_{n}^{d} for $d=2$ and $d=n-1$, namely $\mathcal{T}_{n}^{2}=\left\{K_{1, n-1}\right\}$ and $\mathcal{T}_{n}^{n-1}=\left\{P_{n}\right\}$, where $K_{1, n-1}=T_{n}^{2}(n-3)$ with $n \geq 3$. In Ref. [7], $K_{1, n-1}$ is denoted by X_{n}. Gutman [3] found that the non-branched path P_{n} has maximal, and the maximally branched star X_{n} has minimal energy in \mathcal{T}_{n}.

Fig. 1 (a) Q_{10}; (b) $H_{8} ;$ (c) Q_{8}^{\prime}

For $T_{n}^{3}\left(n_{1}, n_{2}\right)$, we suppose $n_{1} \geq n_{2}$. For example, the trees Y_{n}, Z_{n}, D_{n}, and Q_{n} in Ref. [7] can be re-written as $Y_{n}=T_{n}^{3}(n-4,0)$ with $n \geq 4, Z_{n}=T_{n}^{3}(n-5,1)$ with $n \geq 6, D_{n}=T_{n}^{3}(n-6,2)$ with $n \geq 8$, and $Q_{n}=T_{n}^{3}(n-7,3)$ with $n \geq 10$, respectively.

For $T_{n}^{4}\left(n_{1}, 0, n_{3}\right)$, we suppose $n_{1} \geq n_{3}$. For example, the trees W_{n} and U_{n} in Ref. [7] can be re-written as $W_{n}=T_{n}^{4}(n-5,0,0)$ with $n \geq 5$ and $U_{n}=T_{n}^{4}(n-6,0,1)$ with $n \geq 7$, respectively. In addition, the trees H_{n} and Q_{n}^{\prime} in Ref. [7] can be re-written as $H_{n}=T_{n}^{4}(0, n-5,0)$ with $n \geq 6$ and $Q_{n}^{\prime}=T_{n}^{4}(n-6,1,0)$ with $n \geq 7$, respectively. For example, Q_{10}, H_{8} and Q_{8}^{\prime} are shown in Fig. 1.

For the sake of conciseness, "the k-th minimal tree" is referred to as "the tree with k-th minimal energy". In \mathcal{T}_{n}, Gutman [3] deduced $X_{n}<Y_{n}<Z_{n}<W_{n}<T$ for $n \geq 6$, where $T \neq X_{n}, Y_{n}, Z_{n}, W_{n}$ and $T \in \mathcal{T}_{n}$. Recently, using the quasi-ordering relation, Li and Li [7] extended Gutman's result [3] by determining D_{n} and U_{n} are the fifth- and sixth-minimal trees in \mathcal{T}_{n} with $n \geq 6$ and $n \geq 14$, respectively. Li and Li [7] found two trees Q_{n} and Q_{n}^{\prime} and suggested that either Q_{n} or Q_{n}^{\prime} is the seventhminimal tree in \mathcal{T}_{n} with $n \geq 14$. The quasi-ordering relation, however, can not be used to compare the energies of Q_{n} and Q_{n}^{\prime}. By use of a systematic computer-aided search, Gutman et al. [17] provided a slight correction of the claim in Ref. [7] that D_{n} is the fifth one for $n \geq 9$ only. By numerical calculation, Gutman et al. [17] claimed, but did not prove, that Q_{n} is the seventh one for $n \geq 12$ and Q_{n}^{\prime} is not the seventh one for any value of n. Gutman et al. [17] listed the first 7 trees for $11 \geq n \geq 7$ and all the trees for $n=6$ in the increasing order of their minimal energies within \mathcal{T}_{n}. A rigor mathematical proof for the seventh-minimal tree and further ordering of trees for $n \geq 7$ remain a task.

In this paper, we use a straightforward method to extend Gutman's [3] and Li and Li's [7] results for $n \geq 7$. We mathematically prove that Q_{n} is the seventh-minimal tree for $n \geq 12$ and Q_{n}^{\prime} is not the seventh one for any value of n. We find that Q_{n}^{\prime} is the twelfth-minimal tree for $7117598 \geq n \geq 59$. The method employed here is simple, which makes it easy to find new trees with minimal energy within \mathcal{T}_{n}. Thus we derive the first 9 trees for a general case with $n \geq 46$ and series of trees in the increasing order of their energies for $n \geq 7$. The first 7 trees are consistent with those obtained by Gutman [3] and Li and Li [7] for $n \geq 7$.

2 Preliminaries

For $T \in \mathcal{T}_{n}$, it is consistent to define $m(T, 0)=1$ and $m(T, k)=0$ for $k>n / 2$. Obviously, $m(T, 1)=n-1$. We assume $2 \leq k \leq n / 2$ hereinafter. The trees in \mathcal{T}_{n} can be partitioned into two subsets $\mathcal{T}_{n}^{\mathrm{A}}$ and $\mathcal{T}_{n}^{\mathrm{B}}$ according to the numbers of the k-matchings of the

Fig. 2 (a) A_{9}; (b) B_{9}; (c) C_{9}; (d) I_{9}; (e) J_{10}; (f) $K_{9} ;$ (g) L_{9}; (h) M_{9}
trees with $3 \leq k \leq n / 2$. For the first subset, $\mathcal{T}_{n}^{\mathrm{A}}=\left\{X_{n}, T_{n}^{3}\left(n_{1}, n_{2}\right), T_{n}^{4}\left(n_{1}, 0, n_{3}\right)\right\}$ where the numbers of the k-matchings with $3 \leq k \leq n / 2$ are zero. Thus, $\mathcal{T}_{n}^{\mathrm{B}}=$ $\mathcal{T}_{n}-\mathcal{T}_{n}^{\mathrm{A}}$.

For simplicity, we introduce some notations for trees in $\mathcal{T}_{n}^{\mathrm{B}}$. Let $A_{n}=T_{n}^{5}(n-$ $6,0,0,0)$ with $n \geq 7, B_{n}=T_{n}^{5}(0, n-6,0,0)$ with $n \geq 7, C_{n}=T_{n}^{5}(n-7,0,0,1)$ with $n \geq 8, I_{n}=T_{n}^{4}(1, n-6,0)$ with $n \geq 8, J_{n}=T_{n}^{4}(2, n-7,0)$ with $n \geq 10$, $K_{n}=T_{n}^{4}(n-7,2,0)$ with $n \geq 8$, and $L_{n}=T_{n}^{4}(n-7,1,1)$ with $n \geq 8$. Let M_{n} be a tree obtained from P_{5} by attaching $n-7$ pendant edges and a path of length two to v_{2}, where $n \geq 7$. For example, $A_{9}, B_{9}, C_{9}, I_{9}, J_{10}, K_{9}, L_{9}$, and M_{9} are given in Fig. 2.

To deduce the final results of this paper, Lemmas 1-3 and Conjecture 1 are simply quoted here from Refs. [1,2, 16, 18].
Lemma 1 [1] Let $e=u v$ be an edge of a tree T. Then the characteristic polynomial $\Phi(T, x)$ satisfies

$$
\Phi(T, x)=\Phi(T-e, x)-\Phi(T-u-v, x)
$$

Lemma 2 [2] Let $e=u v$ be an edge of G and k a positive integer. Then we have

$$
\begin{equation*}
m(G, k)=m(G-e, k)+m(G-u-v, k-1) \tag{6}
\end{equation*}
$$

Lemma 3 [18] Let d be a positive integer more than one and T a tree with n vertices having diameter at least d. Then $T_{n}^{d}(n-d-1,0,0, \ldots, 0) \rightrightarrows T$ with equality if and only if (iff) $T=T_{n}^{d}(n-d-1,0,0, \ldots, 0)$.

Zhou and Li [16] characterized the second-minimal trees in \mathcal{T}_{n}^{d} are $T_{n}^{d}(0,0, n-$ $d-1,0, \ldots, 0)$ if $d \geq 6, Y_{n}$ if $d=3, U_{n}$ or H_{n} if $d=4$ and $n \geq 7, B_{n}$ or C_{n} if $d=5$ and $n \geq 9$. Zhou and $\mathrm{Li}[16]$ proposed the following conjecture.

Conjecture 1 [16] U_{n} with $n \geq 7$ and B_{n} with $n \geq 9$ are the second-minimal trees in \mathcal{T}_{n}^{4} and \mathcal{T}_{n}^{5}, respectively.

Recently, Li and Li [7] showed that Conjecture 1 holds for $d=4$. In Sect. 3, we will prove that Conjecture 1 is also true for $d=5$.

3 Main results

In this section, we assume that T appearing in the last terms of all the inequalities does not contain the preceding terms and the calculation for comparing the energies of two trees is directly performed on the basis of (2).

In Lemmas 4-12, we provide the inequalities which can not be proved by the quasiordering relation. However, these inequalities can be obtained by using the theorem of zero points.

Lemma $4 A_{n} \rightharpoonup I_{n}$ for $n \geq 8$.

Proof Straightforward derivation by Lemma 1 yields

$$
\begin{aligned}
& \Phi\left(A_{n}, x\right)=x^{n-6}\left[-(n-5)+(3 n-12) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{1}(x) \\
& \Phi\left(I_{n}, x\right)=x^{n-6}\left[-(2 n-12)+(3 n-13) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{2}(x)
\end{aligned}
$$

It is noted that the exact solutions for the roots of $f_{1}(x)=0$ and $f_{2}(x)=0$ with respect to x can be obtained. However, the exact representations for the energies of A_{n} and I_{n} are too complex to compare their quantities for an arbitrary n. As it is, approximate roots of $f_{1}(x)=0$ and $f_{2}(x)=0$ can be used instead.

Obviously, we have

$$
\begin{aligned}
& f_{1}(\sqrt{0.37})=0.747553-0.0269 n<0, \quad(n \geq 28), \\
& f_{1}(\sqrt{0.39})=0.531419+0.0179 n>0, \quad(n \geq 7), \\
& f_{1}(\sqrt{2.58})=-2.13009+0.0836 n>0, \quad(n \geq 26), \\
& f_{1}(\sqrt{2.7})=-0.427-0.19 n<0, \quad(n \geq 7), \\
& f_{1}(\sqrt{n-4})=5-n<0, \quad(n \geq 7), \\
& f_{1}(\sqrt{n-3.9})=0.1(-15.9902+n)(-4.80983+n)>0, \quad(n \geq 16)
\end{aligned}
$$

According to the theorem of zero points, we have, for $n \geq 28$,

$$
\begin{equation*}
E\left(A_{n}\right)<2(\sqrt{0.39}+\sqrt{2.7}+\sqrt{n-3.9}) . \tag{7}
\end{equation*}
$$

Obviously, we have

$$
\begin{aligned}
& f_{2}(\sqrt{0.92})=1.66509-0.0864 n<0, \quad(n \geq 20) \\
& f_{2}(1)=1>0, \quad(n \geq 7) \\
& f_{2}(\sqrt{1.9})=-2.231+0.09 n>0, \quad(n \geq 25) \\
& f_{2}(\sqrt{2})=-2<0, \quad(n \geq 7) \\
& f_{2}(\sqrt{n-4})=16-3 n<0, \quad(n \geq 7) \\
& f_{2}(\sqrt{n-3.9})=0.1(-35.574+n)(-5.22601+n)>0, \quad(n \geq 36)
\end{aligned}
$$

According to the theorem of zero points, we have, for $n \geq 36$,

$$
\begin{equation*}
2(\sqrt{0.92}+\sqrt{1.9}+\sqrt{n-4})<E\left(I_{n}\right) . \tag{8}
\end{equation*}
$$

It follows from $\sqrt{0.39}+\sqrt{2.7}+\sqrt{n-3.9}<\sqrt{0.92}+\sqrt{1.9}+\sqrt{n-4}$ that the right-hand side (RHS) of (7) is less than the left-hand side (LHS) of (8) as $n \geq 36$. Therefore, $A_{n} \rightharpoonup I_{n}$ for $n \geq 36$.

The calculation yields $A_{n} \rightharpoonup I_{n}$ for $35 \geq n \geq 8$.
Next, we simply provide the necessary equations and inequalities in the proofs for Lemmas 5-12 since the method involved is similar to that for Lemma4.

Lemma $5 B_{n} \rightharpoonup K_{n}$ for $n \geq 11$ and $K_{n} \rightharpoonup B_{n}$ for $10 \geq n \geq 8$.
Proof Straightforward derivation by Lemma 1 yields

$$
\begin{aligned}
& \Phi\left(B_{n}, x\right)=x^{n-6}\left[-(2 n-11)+(3 n-12) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{3}(x) \\
& \Phi\left(K_{n}, x\right)=x^{n-6}\left[-(2 n-12)+(4 n-21) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{4}(x)
\end{aligned}
$$

Since

$$
\begin{aligned}
& f_{3}(\sqrt{0.97})=1.21357-0.0309 n<0, \quad(n \geq 40), \\
& f_{3}(1)=1>0, \quad(n \geq 7) \\
& f_{3}(\sqrt{1.98})=-1.07721+0.0196 n>0, \quad(n \geq 55), \\
& f_{3}(\sqrt{2})=-1<0, \quad(n \geq 7) \\
& f_{3}(\sqrt{n-4})=11-2 n<0, \quad(n \geq 6), \\
& f_{3}(\sqrt{n-3.9})=0.1(-25.4125+n)(-5.38751+n)>0, \quad(n \geq 26),
\end{aligned}
$$

we have, for $n \geq 55$,

$$
\begin{equation*}
E\left(B_{n}\right)<2(1+\sqrt{2}+\sqrt{n-3.9}) . \tag{9}
\end{equation*}
$$

Since

$$
\begin{aligned}
& f_{4}(\sqrt{0.55})=0.918875-0.1025 n<0, \quad(n \geq 9) \\
& f_{4}(\sqrt{0.59})=0.163479+0.0119 n>0, \quad(n \geq 7) \\
& f_{4}(\sqrt{3.3})=-10.473+0.31 n>0, \quad(n \geq 34) \\
& f_{4}(\sqrt{3.42})=-8.12191-0.0164 n<0, \quad(n \geq 7) \\
& f_{4}(\sqrt{n-5})=17-3 n<0, \quad(n \geq 7), \\
& f_{4}(\sqrt{n-4.7})=0.3(-18.0509+n)(-5.34915+n)>0, \quad(n \geq 19)
\end{aligned}
$$

we have, for $n \geq 34$,

$$
\begin{equation*}
2(\sqrt{0.55}+\sqrt{3.3}+\sqrt{n-5})<E\left(K_{n}\right) \tag{10}
\end{equation*}
$$

It follows from $1+\sqrt{2}+\sqrt{n-3.9}<\sqrt{0.55}+\sqrt{3.3}+\sqrt{n-5}$ that the RHS of (9) is less than the LHS of (10) as $n \geq 55$. Therefore, $B_{n} \rightharpoonup K_{n}$ for $n \geq 55$.

The calculation yields $B_{n} \rightharpoonup K_{n}$ for $54 \geq n \geq 11$ and $K_{n} \rightharpoonup B_{n}$ for $10 \geq n \geq 8$.

Lemma $6 C_{n} \rightharpoonup M_{n}$ for $n \geq 8$.
Proof Straightforward derivation by Lemma 1 yields

$$
\begin{aligned}
\Phi\left(C_{n}, x\right) & =x^{n-6}\left[-(2 n-12)+(4 n-19) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{5}(x), \\
\Phi\left(M_{n}, x\right) & =x^{n-8}\left[(n-7)-(3 n-17) x^{2}+(3 n-12) x^{4}-(n-1) x^{6}+x^{8}\right] \\
& \triangleq x^{n-8} f_{6}(x) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& f_{5}(\sqrt{0.55})=2.01887-0.1025 n<0, \quad(n \geq 20) \\
& f_{5}(\sqrt{0.59})=1.34348+0.0119 n>0, \quad(n \geq 8) \\
& f_{5}(\sqrt{3.3})=-3.873+0.31 n>0, \quad(n \geq 13), \\
& f_{5}(\sqrt{3.42})=-1.28191-0.0164 n<0, \quad(n \geq 8),
\end{aligned}
$$

$$
\begin{aligned}
& f_{5}(\sqrt{n-5})=7-n<0, \quad(n \geq 8) \\
& f_{5}(\sqrt{n-4.9})=0.1(-17.0962+n)(-6.70385+n)>0, \quad(n \geq 18)
\end{aligned}
$$

we have, for $n \geq 20$,

$$
\begin{equation*}
E\left(C_{n}\right)<2(\sqrt{0.59}+\sqrt{3.42}+\sqrt{n-4.9}) . \tag{11}
\end{equation*}
$$

Since

$$
\begin{aligned}
& f_{6}(\sqrt{0.94})=-0.011867+0.000216 n>0, \quad(n \geq 55), \\
& f_{6}(\sqrt{1-1 / n})=\left(1-5 n-2 n^{2}\right) / n^{4}<0, \quad(n \geq 8), \\
& f_{6}(\sqrt{1-2 / n})=-4\left(-4+10 n+n^{2}\right) / n^{4}<0, \quad(n \geq 8), \\
& f_{6}(\sqrt{1-10 / n})=100\left(100-50 n+7 n^{2}\right) / n^{4}>0, \quad(n \geq 8), \\
& f_{6}(1)=0, \quad(n \geq 8), \\
& f_{6}(\sqrt{n-4})=-3(-5+n)^{2}<0, \quad(n \geq 8), \\
& f_{6}(\sqrt{n-3.9})=0.1(-34.9+n)\left(24.01-9.8 n+n^{2}\right)>0, \quad(n \geq 35),
\end{aligned}
$$

we have, for $n \geq 55$,

$$
\begin{equation*}
2(\sqrt{0.94}+\sqrt{1-2 / n}+1+\sqrt{n-4})<E\left(M_{n}\right) \tag{12}
\end{equation*}
$$

It follows from $\sqrt{0.59}+\sqrt{3.42}+\sqrt{n-4.9}<\sqrt{0.94}+\sqrt{1-2 / n}+1+\sqrt{n-4}$ that the RHS of (11) is less than the LHS of (12) as $n \geq 55$. Therefore, $C_{n} \rightharpoonup M_{n}$ for $n \geq 55$.

The calculation yields $C_{n} \rightharpoonup M_{n}$ for $54 \geq n \geq 8$.
Lemma $7 C_{n} \rightharpoonup J_{n}$ for $n \geq 11$.
Proof Straightforward derivation by Lemma 1 yields

$$
\Phi\left(J_{n}, x\right)=x^{n-6}\left[-(3 n-21)+(4 n-21) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{7}(x) .
$$

Since

$$
\begin{aligned}
& f_{7}(\sqrt{0.95})=2.80988-0.1025 n<0, \quad(n \geq 40) \\
& f_{7}(1)=2>0, \quad(n \geq 10) \\
& f_{7}(\sqrt{2.8})=-8.008+0.36 n>0, \quad(n \geq 23) \\
& f_{7}(\sqrt{3})=-6<0, \quad(n \geq 10)
\end{aligned}
$$

$$
\begin{aligned}
& f_{7}(\sqrt{n-5})=26-4 n<0, \quad(n \geq 10) \\
& f_{7}(\sqrt{n-4.9})=0.1(-47.4183+n)(-6.38172+n)>0, \quad(n \geq 48)
\end{aligned}
$$

we have, for $n \geq 48$,

$$
\begin{equation*}
2(\sqrt{0.95}+\sqrt{2.8}+\sqrt{n-5})<E\left(J_{n}\right) \tag{13}
\end{equation*}
$$

It follows from $\sqrt{0.59}+\sqrt{3.42}+\sqrt{n-4.9}<\sqrt{0.95}+\sqrt{2.8}+\sqrt{n-5}$ that the RHS of (11) is less than the LHS of (13) as $n \geq 48$. Therefore, $C_{n} \rightharpoonup J_{n}$ for $n \geq 48$.

The calculation yields $C_{n} \rightharpoonup J_{n}$ for $47 \geq n \geq 11$.
By Lemma 5, we will show that Conjecture 1 holds for $d=5$, as given in Lemma 8 .
Lemma 8 Let $T \in \mathcal{T}_{n}^{5}$. Then $A_{n} \rightharpoonup B_{n} \rightharpoonup C_{n} \rightharpoonup T$ for $n \geq 9$ and $A_{n} \rightharpoonup C_{n} \rightharpoonup$ $B_{n} \rightharpoonup T$ for $n=8$.

Proof By Lemma3, we have $A_{n} \rightharpoonup B_{n}$ for $n \geq 9$ and $A_{n} \rightharpoonup C_{n}$ for $n=8$. As $n \geq 9, K_{n} \rightharpoonup C_{n}$ follows from $m\left(K_{n}, 2\right)=4 n-21<4 n-19=m\left(C_{n}, 2\right)$, $m\left(K_{n}, 3\right)=m\left(C_{n}, 3\right)=2 n-12$ and $m\left(K_{n}, k\right)=m\left(C_{n}, k\right)=0$ with $4 \leq k \leq n / 2$. Furthermore, by Lemma 5, we have $B_{n} \rightharpoonup C_{n}$ for $n \geq 11$. The calculation yields $B_{n} \rightharpoonup C_{n}$ for $n=10,9 . C_{n} \rightharpoonup T$ for $n \geq 9$ was proved by Zhou and Li [16]. The calculation yields $C_{n} \rightharpoonup B_{n} \rightharpoonup T$ for $n=8$. In conclusion, Lemma 8 holds.

Lemma $9 T_{n}^{4}(n-7,0,2) \rightharpoonup H_{n}$ for $n \geq 9$.
Proof Straightforward derivation by Lemma 1 yields

$$
\begin{aligned}
& \Phi\left(T_{n}^{4}(n-7,0,2), x\right)=x^{n-4}\left[(4 n-21)-(n-1) x^{2}+x^{4}\right] \triangleq x^{n-4} f_{8}(x) \\
& \Phi\left(H_{n}, x\right)=x^{n-6}\left[-(n-5)+(2 n-7) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{9}(x)
\end{aligned}
$$

Since

$$
\begin{aligned}
& f_{8}(\sqrt{3.8})=-2.76+0.2 n>0, \quad(n \geq 14) \\
& f_{8}(2)=-1<0, \quad(n \geq 7) \\
& f_{8}(\sqrt{n-5})=-1<0, \quad(n \geq 7) \\
& f_{8}(\sqrt{n-4.95})=-1.4475+0.05 n>0, \quad(n \geq 29)
\end{aligned}
$$

we have, for $n \geq 29$,

$$
\begin{equation*}
E\left(T_{n}^{4}(n-7,0,2)\right)<2(2+\sqrt{n-4.95}) \tag{14}
\end{equation*}
$$

Since

$$
\begin{align*}
& f_{9}(\sqrt{1-3 / n})=-3\left(9-12 n+n^{2}\right) / n^{3}<0, \quad(n \geq 12), \tag{15}\\
& f_{9}(\sqrt{1-1 / n})=\left(-1+4 n+n^{2}\right) / n^{3}>0, \quad(n \geq 6), \tag{16}\\
& f_{9}(1)=0, \quad(n \geq 6), \tag{17}\\
& f_{9}(\sqrt{n-3})=8-2 n<0, \quad(n \geq 6), \tag{18}\\
& f_{9}(\sqrt{n-2.9})=0.1(-23.9+n)(-3.9+n)>0, \quad(n \geq 24), \tag{19}
\end{align*}
$$

we have, for $n \geq 24$,

$$
\begin{equation*}
2(\sqrt{1-3 / n}+1+\sqrt{n-3})<E\left(H_{n}\right) \tag{20}
\end{equation*}
$$

It follows from $2+\sqrt{n-4.95}<\sqrt{1-3 / n}+1+\sqrt{n-3}$ that the RHS of (14) is less than the LHS of (20) as $n \geq 29$. Therefore, $T_{n}^{4}(n-7,0,2) \rightharpoonup H_{n}$ for $n \geq 29$.

The calculation yields $T_{n}^{4}(n-7,0,2) \rightharpoonup H_{n}$ for $28 \geq n \geq 9$.
Lemma $10 H_{n} \rightharpoonup T_{n}^{3}(n-8,4)$ for $n \geq 46$ and $T_{n}^{3}(n-8,4) \rightharpoonup H_{n}$ for $45 \geq n \geq 12$. Proof It follows from (15)-(19) that, for $n \geq 24$,

$$
\begin{equation*}
E\left(H_{n}\right)<2(\sqrt{1-1 / n}+1+\sqrt{n-2.9}) . \tag{21}
\end{equation*}
$$

Straightforward derivation by Lemma 1 yields

$$
\Phi\left(T_{n}^{3}(n-8,4), x\right)=x^{n-4}\left[(5 n-35)-(n-1) x^{2}+x^{4}\right] \triangleq x^{n-4} f_{10}(x) .
$$

Since

$$
\begin{aligned}
& f_{10}(\sqrt{4.86})=-6.5204+0.14 n>0, \quad(n \geq 47) \\
& f_{10}(\sqrt{5})=-5<0, \quad(n \geq 12) \\
& f_{10}(\sqrt{n-6})=-5<0, \quad(n \geq 12) \\
& f_{10}(\sqrt{n-5.5})=-10.25+0.5 n>0, \quad(n \geq 21)
\end{aligned}
$$

we have, for $n \geq 47$,

$$
\begin{equation*}
2(\sqrt{4.86}+\sqrt{n-6})<E\left(T_{n}^{3}(n-8,4)\right) \tag{22}
\end{equation*}
$$

It follows from $\sqrt{1-1 / n}+1+\sqrt{n-2.9}<\sqrt{4.86}+\sqrt{n-6}$ that the RHS of (21) is less than the LHS of (22) as $n \geq 58$. Therefore, $H_{n} \rightharpoonup T_{n}^{3}(n-8,4)$ for $n \geq 58$.

The calculation yields $H_{n} \rightharpoonup T_{n}^{3}(n-8,4)$ for $57 \geq n \geq 46$ while $T_{n}^{3}(n-8,4) \rightharpoonup$ H_{n} for $45 \geq n \geq 12$.

Lemma $11 T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime}$ for $7117598 \geq n \geq 11$.
Proof Straightforward derivation by Lemma 1 yields

$$
\begin{aligned}
& \Phi\left(T_{n}^{4}(n-8,0,3), x\right)=x^{n-4}\left[(5 n-31)-(n-1) x^{2}+x^{4}\right] \triangleq x^{n-4} f_{11}(x), \\
& \Phi\left(Q_{n}^{\prime}, x\right)=x^{n-6}\left[-(n-5)+(3 n-13) x^{2}-(n-1) x^{4}+x^{6}\right] \triangleq x^{n-6} f_{12}(x) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& f_{11}(\sqrt{4.94})=-1.6564+0.06 n>0, \quad(n \geq 28), \\
& f_{11}(\sqrt{5-1 / 10 n})=\left(1-110 n-90 n^{2}\right) / 100 n^{2}<0, \quad(n \geq 11), \\
& f_{11}(\sqrt{n-6})=-1<0, \quad(n \geq 11), \\
& f_{11}(\sqrt{n-5.99})=-1.1099+0.01 n>0, \quad(n \geq 111),
\end{aligned}
$$

we have, for $n \geq 111$,

$$
\begin{equation*}
E\left(T_{n}^{4}(n-8,0,3)\right)<2(\sqrt{5-1 / 10 n}+\sqrt{n-5.99}) \tag{23}
\end{equation*}
$$

Since

$$
\begin{align*}
& f_{12}(\sqrt{0.3819})=0.236847-0.00014761 n<0, \quad(n \geq 1605) \tag{24}\\
& f_{12}(\sqrt{0.389})=0.153185+0.015679 n>0, \quad(n \geq 11) \tag{25}\\
& f_{12}(\sqrt{2.617})=-4.24929+0.002311 n>0, \quad(n \geq 1839) \tag{26}\\
& f_{12}(\sqrt{2.7})=-3.127-0.19 n<0, \quad(n \geq 11), \tag{27}\\
& f_{12}(\sqrt{n-4})=9-2 n<0, \quad(n \geq 11) \tag{28}\\
& f_{12}(\sqrt{n-3.9})=0.1(-26.4114+n)(-4.38864+n)>0, \quad(n \geq 27) \tag{29}
\end{align*}
$$

we have, for $n \geq 1839$,

$$
\begin{equation*}
2(\sqrt{0.3819}+\sqrt{2.617}+\sqrt{n-4})<E\left(Q_{n}^{\prime}\right) \tag{30}
\end{equation*}
$$

It follows from $\sqrt{5-1 / 10 n}+\sqrt{n-5.99}<\sqrt{0.3819}+\sqrt{2.617}+\sqrt{n-4}$ that the RHS of (23) is less than the LHS of (30) as $7117598 \geq n \geq 1839$. Therefore, $T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime}$ for $7117598 \geq n \geq 1839$.

The calculation yields $T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime}$ for $1838 \geq n \geq 11$.

It should be noted that the theorem of zero points is not applicable for the mathematical proof of $T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime}$ with $n \geq 7117599$. However, the calculation and graphical representation allow us to make a conjecture for $n \geq 7117599$ as follows. A rigorous proof for Conjecture 2 remains a mathematical task for the future.

Conjecture $2 T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime}$ for $n \geq 7117599$.
Lemma $12 Q_{n}^{\prime} \rightharpoonup T_{n}^{3}(n-9,5)$ for $n \geq 59$ while $T_{n}^{3}(n-9,5) \rightharpoonup Q_{n}^{\prime}$ for $58 \geq$ $n \geq 14$.

Proof We have

$$
\begin{align*}
& f_{12}(\sqrt{0.37})=0.377553-0.0269 n<0, \quad(n \geq 14) \tag{31}\\
& f_{12}(\sqrt{2.5})=-5.625+0.25 n>0, \quad(n \geq 23) \tag{32}
\end{align*}
$$

It follows from (31), (25), (32), and (27)-(29) that, for $n \geq 27$,

$$
\begin{equation*}
E\left(Q_{n}^{\prime}\right)<2(\sqrt{0.389}+\sqrt{2.7}+\sqrt{n-3.9}) . \tag{33}
\end{equation*}
$$

Straightforward derivation by Lemma 1 yields

$$
\Phi\left(T_{n}^{3}(n-9,5), x\right)=x^{n-4}\left[(6 n-48)-(n-1) x^{2}+x^{4}\right] \triangleq x^{n-4} f_{13}(x)
$$

Since

$$
\begin{aligned}
& f_{13}(\sqrt{5.83})=-8.1811+0.17 n>0, \quad(n \geq 49) \\
& f_{13}(\sqrt{6})=-6<0, \quad(n \geq 7) \\
& f_{13}(\sqrt{n-7})=-6<0, \quad(n \geq 7) \\
& f_{13}(\sqrt{n-6.5})=-12.25+0.5 n>0, \quad(n \geq 25)
\end{aligned}
$$

we have, for $n \geq 49$,

$$
\begin{equation*}
2(\sqrt{5.83}+\sqrt{n-7})<E\left(T_{n}^{3}(n-9,5)\right) \tag{34}
\end{equation*}
$$

It follows from $\sqrt{0.389}+\sqrt{2.7}+\sqrt{n-3.9}<\sqrt{5.83}+\sqrt{n-7}$ that the RHS of (33) is less than the LHS of (34) as $n \geq 116$. Therefore, $Q_{n}^{\prime} \rightharpoonup T_{n}^{3}(n-9,5)$ for $n \geq 116$.

The calculation yields $Q_{n}^{\prime} \rightharpoonup T_{n}^{3}(n-9,5)$ for $115 \geq n \geq 59$ while $T_{n}^{3}(n-9,5) \rightharpoonup$ Q_{n}^{\prime} for $58 \geq n \geq 14$.

We introduce Property 1 and Lemma 13 to deduce the increasing orders of the trees in $\mathcal{T}_{n}^{\mathrm{A}}$ which are given in Lemmas 14 and 15 for $n \geq 18$ and $17 \geq n \geq 7$, respectively.

Property 1 Let $n \geq$ 7. (i) $E\left(T_{n}^{3}\left(n_{1}, n_{2}\right)\right)$ is a monotonously increasing function of n_{2}. (ii) $E\left(T_{n}^{4}\left(n_{1}, 0, n_{3}\right)\right)$ is a monotonously increasing function of n_{3}.

Proof Since $n_{1}+n_{2}=n-4$ for $T_{n}^{3}\left(n_{1}, n_{2}\right)$, we have

$$
\begin{equation*}
m\left(T_{n}^{3}\left(n_{1}, n_{2}\right), 2\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)=-n_{2}^{2}+(n-4) n_{2}+(n-3) \tag{35}
\end{equation*}
$$

As $0 \leq n_{2} \leq(n-4) / 2$, it follows from (35) that $m\left(T_{n}^{3}\left(n_{1}, n_{2}\right), 2\right)$ is a monotonously increasing function of n_{2}. Since $m\left(T_{n}^{3}\left(n_{1}, n_{2}\right), k\right)=0$ for $3 \leq k \leq n / 2$, Property 1(i) holds.

Since $n_{1}+n_{3}=n-5$ for $T_{n}^{4}\left(n_{1}, 0, n_{3}\right)$, we have

$$
\begin{align*}
m\left(T_{n}^{4}\left(n_{1}, 0, n_{3}\right), 2\right) & =\left(n_{1}+1\right)\left(n_{3}+2\right)+\left(n_{3}+1\right) \\
& =-n_{3}^{2}+(n-5) n_{3}+(2 n-7) \tag{36}
\end{align*}
$$

As $0 \leq n_{3} \leq(n-5) / 2$, it follows from (36) that $m\left(T_{n}^{4}\left(n_{1}, 0, n_{3}\right), 2\right)$ is a monotonously increasing function of n_{3}. Since $m\left(T_{n}^{4}\left(n_{1}, 0, n_{3}\right), k\right)=0$ for $3 \leq k \leq n / 2$, Property 1(ii) holds.

Lemma 13 Let $n \geq 12$.
(i) If $0 \leq a \leq(n-11) / 3$, then

$$
\begin{aligned}
T_{n}^{4}(n-5-a, 0, a) & \rightharpoonup T_{n}^{3}(n-6-a, a+2) \rightharpoonup T_{n}^{4}(n-6-a, 0, a+1) \\
& \rightrightarrows T_{n}^{3}(n-7-a, a+3)
\end{aligned}
$$

with equality iff $a=(n-11) / 3$.
(ii) If $(n-11) / 3<a<(n-8) / 3$, then

$$
\begin{aligned}
T_{n}^{4}(n-5-a, 0, a) & \rightharpoonup T_{n}^{3}(n-6-a, a+2) \rightharpoonup T_{n}^{3}(n-7-a, a+3) \\
& \rightharpoonup T_{n}^{4}(n-6-a, 0, a+1) .
\end{aligned}
$$

(iii) If $(n-8) / 3 \leq a \leq(2 n-17) / 5$, then

$$
\begin{aligned}
T_{n}^{3}(n-6-a, a+2) & \rightrightarrows T_{n}^{4}(n-5-a, 0, a) \rightrightarrows T_{n}^{3}(n-7-a, a+3) \\
& \rightharpoonup T_{n}^{4}(n-6-a, 0, a+1) .
\end{aligned}
$$

The first and second equalities hold iff $a=(n-8) / 3$ and $a=(2 n-17) / 5$, respectively.
(iv) If $a>(2 n-17) / 5$, then

$$
\begin{aligned}
T_{n}^{3}(n-6-a, a+2) & \rightharpoonup T_{n}^{3}(n-7-a, a+3) \rightharpoonup T_{n}^{4}(n-5-a, 0, a) \\
& \rightharpoonup T_{n}^{4}(n-6-a, 0, a+1)
\end{aligned}
$$

Proof It is obvious that, for $3 \leq k \leq n / 2$, the k-matchings for the trees considered in Lemma 13 are zero. Next we compare the numbers of their 2-matchings. By (35) and (36), we deduce

$$
\begin{align*}
& m\left(T_{n}^{4}(n-5-a, 0, a), 2\right)-m\left(T_{n}^{3}(n-6-a, a+2), 2\right)=3 a-(n-8), \tag{37}\\
& m\left(T_{n}^{3}(n-6-a, a+2), 2\right)-m\left(T_{n}^{4}(n-6-a, 0, a+1), 2\right)=-(a+2), \tag{38}\\
& m\left(T_{n}^{4}(n-6-a, 0, a+1), 2\right)-m\left(T_{n}^{3}(n-7-a, a+3), 2\right)=3 a-(n-11), \tag{39}\\
& m\left(T_{n}^{4}(n-5-a, 0, a), 2\right)-m\left(T_{n}^{3}(n-7-a, a+3), 2\right)=5 a-(2 n-17) . \tag{40}
\end{align*}
$$

As $0 \leq a \leq(n-11) / 3$, by (37)-(39), we have Lemma 13(i).
As $(n-11) / 3<a<(n-8) / 3$, by (37), Property 1(i) and (39), we have Lemma 13(ii).

As $(n-8) / 3 \leq a \leq(2 n-17) / 5$, by (37), (40) and (39), we have Lemma 13(iii).
As $a>(2 n-17) / 5$, by Property 1(i), (40) and Property 1(ii), we have Lemma 13(iv).

Lemma 13 shows that $T_{n}^{3}\left(n_{1}, n_{2}\right)$ and $T_{n}^{4}\left(n_{1}, 0, n_{3}\right)$ are staggered in the increasing order of their energies.

Obviously, the k-matchings with $3 \leq k \leq n / 2$ for $X_{n}, Y_{n}, Z_{n}, W_{n}, D_{n}$, and U_{n} are zero. For $n \geq 7$, we deduce $m\left(X_{n}, 2\right)=0<m\left(Y_{n}, 2\right)=n-3<2 n-8=$ $m\left(Z_{n}, 2\right)<m\left(W_{n}, 2\right)=2 n-7 \leq 3 n-15=m\left(D_{n}, 2\right)<3 n-13=m\left(U_{n}, 2\right)$. This inequality still holds without " $\leq 3 n-15=m\left(D_{n}, 2\right)$ " for $n=7$. Therefore, we have

$$
\begin{align*}
& X_{n} \rightharpoonup Y_{n} \rightharpoonup Z_{n} \rightharpoonup W_{n} \rightrightarrows D_{n} \rightharpoonup U_{n}, \quad(n \geq 8), \tag{41}\\
& X_{n} \rightharpoonup Y_{n} \rightharpoonup Z_{n} \rightharpoonup W_{n} \rightharpoonup U_{n}, \quad(n=7) . \tag{42}
\end{align*}
$$

The equality in (41) holds iff $n=8$. The inequalities in (42) and (41) were also reported by Gutman [3] and Li and Li [7]. For the sake of conciseness, the symbols (∇) and (\triangle) denote hereinafter (41) and $X_{n} \rightharpoonup Y_{n} \rightharpoonup Z_{n} \rightharpoonup W_{n} \rightharpoonup D_{n}$, respectively.

As $n \geq 14$ and $a=1 \leq(n-11) / 3$, by Lemma 13(i), we get $U_{n} \rightarrow Q_{n} \rightharpoonup$ $T_{n}^{4}(n-7,0,2) \rightrightarrows T_{n}^{3}(n-8,4)$ with equality iff $n=14$. For the sake of conciseness, the inequalities

$$
\begin{align*}
& (\nabla) \rightharpoonup Q_{n} \rightharpoonup T_{n}^{4}(n-7,0,2), \quad(n \geq 14), \tag{43}\\
& (\nabla) \rightharpoonup Q_{n} \rightharpoonup T_{n}^{4}(n-7,0,2) \rightrightarrows T_{n}^{3}(n-8,4), \quad(n \geq 14) \tag{44}
\end{align*}
$$

are hereinafter denoted by the symbols (\diamond) and (\perp), respectively.
Lemma 14 Let $T \in \mathcal{T}_{n}^{A}$ with $n \geq 18$, we have

$$
\begin{equation*}
(\perp) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{3}(n-9,5) \rightharpoonup T . \tag{45}
\end{equation*}
$$

Proof As $n \geq 18$ and $a=2<(n-11) / 3$, by Lemma 13(i), we have the first and second inequalities in (45). By Property 1(i), we obtain $T_{n}^{3}(n-9,5) \rightharpoonup T$ for
$T=T_{n}^{3}\left(n_{1}, n_{2}\right)$ with $n_{2} \geq 6$. Since $m\left(T_{n}^{3}(n-9,5), 2\right)=6 n-48<6 n-43=$ $m\left(T_{n}^{4}(n-9,0,4), 2\right)$ and $m\left(T_{n}^{3}(n-9,5), k\right)=m\left(T_{n}^{4}(n-9,0,4), k\right)=0$ for $3 \leq k \leq n / 2$, we get $T_{n}^{3}(n-9,5) \rightharpoonup T_{n}^{4}(n-9,0,4)$. Furthermore, by Property 1 (ii), we obtain $T_{n}^{3}(n-9,5) \rightharpoonup T$ for $T=T_{n}^{4}\left(n_{1}, 0, n_{3}\right)$ with $n_{3} \geq 4$. In conclusion, $T_{n}^{3}(n-9,5) \rightharpoonup T$ holds for $T \in \mathcal{T}_{n}^{\mathrm{A}}$.
Lemma 15 The increasing order by their energies of all the trees in \mathcal{T}_{n}^{A} are

$$
\begin{align*}
(\perp) & \rightharpoonup T_{n}^{4}(n-8,0,3) \leftrightarrows T_{n}^{3}(n-9,5) \rightharpoonup T_{n}^{3}(n-10,6) \rightharpoonup T_{n}^{4}(n-9,0,4) \\
& \rightharpoonup T_{n}^{4}(n-10,0,5) \rightharpoonup T_{n}^{4}(n-11,0,6), \quad(n=17), \tag{46}\\
(\perp) & \rightharpoonup T_{n}^{3}(n-9,5) \rightharpoonup T_{n}^{4}(n-8,0,3) \leftrightarrows T_{n}^{3}(n-10,6) \rightharpoonup T_{n}^{4}(n-9,0,4) \\
& \rightharpoonup T_{n}^{4}(n-10,0,5), \quad(n=16), \tag{47}\\
(\perp) & \rightharpoonup T_{n}^{3}(n-9,5) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{4}(n-9,0,4) \\
& \rightharpoonup T_{n}^{4}(n-10,0,5), \quad(n=15), \tag{48}\\
(\perp) & \rightharpoonup T_{n}^{3}(n-9,5) \rightharpoonup T_{n}^{4}(n-8,0,3) \\
& \rightharpoonup T_{n}^{4}(n-9,0,4), \quad(n=14), \tag{49}\\
(\nabla) & -Q_{n} \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup T_{n}^{4}(n-7,0,2) \rightharpoonup T_{n}^{4}(n-8,0,3) \\
& \rightharpoonup T_{n}^{4}(n-9,0,4),(n=13), \tag{50}\\
(\nabla) & -Q_{n} \rightharpoonup T_{n}^{3}(n-8,4)-T_{n}^{4}(n-7,0,2) \rightharpoonup T_{n}^{4}(n-8,0,3), \quad(n=12), \tag{51}\\
(\nabla) & \leftrightarrows Q_{n} \rightharpoonup T_{n}^{4}(n-7,0,2) \\
& \rightharpoonup T_{n}^{4}(n-8,0,3) \quad(n=11), \tag{52}\\
(\triangle) & -Q_{n} \rightharpoonup U_{n} \rightharpoonup T_{n}^{4}(n-7,0,2), \quad(n=10), \tag{53}\\
(\nabla) & -T_{n}^{4}(n-7,0,2), \quad(n=9) . \tag{54}
\end{align*}
$$

Proof Let $n=17$. As $a=2=(n-11) / 3$, by Lemma 13(i), we get the first inequalities and the equality in (46). As $a=3=(n-8) / 3$, by Lemma 13(iii), we get the second and third inequalities in (46). By Property 1(ii), we have the remaining inequalities in (46).

Let $n=16$. As $(n-11) / 3<a=2<(n-8) / 3$, by Lemma 13(ii), we get the first and second inequalities in (47). As $a=3=(2 n-17) / 5$, by Lemma 13(iii), we get the equality and the third inequality in (47). By Property 1(ii), we have the last inequality in (47).

Let $n=15$. As $(n-11) / 3<a=2<(n-8) / 3$, by Lemma 13(ii), we get the first and second inequalities in (48). By Property 1(ii), we have the remaining inequalities in (48).

Let $n=14$. As $a=2=(n-8) / 3$, by Lemma 13(iii), we get the first and second inequalities in (49). By Property 1(ii), we have the last inequality in (49).

Let $n=13,12$. As $(n-11) / 3<a=1<(n-8) / 3$, by Lemma 13(ii), we get the first to the third inequalities in (50) and (51). By Property 1(ii), we have the remaining inequalities in (50) and (51).

Since $m\left(D_{n}, 2\right)=3 n-15, m\left(U_{n}, 2\right)=3 n-13, m\left(Q_{n}, 2\right)=4 n-24, m\left(T_{n}^{4}(n-\right.$ $7,0,2), 2)=4 n-21, m\left(T_{n}^{4}(n-8,0,3), 2\right)=5 n-31$, we deduce $m\left(U_{n}, 2\right)=$ $m\left(Q_{n}, 2\right)<m\left(T_{n}^{4}(n-7,0,2), 2\right)<m\left(T_{n}^{4}(n-8,0,3), 2\right)$ for $n=11$ and
$m\left(D_{n}, 2\right)<m\left(Q_{n}, 2\right)<m\left(U_{n}, 2\right)<m\left(T_{n}^{4}(n-7,0,2), 2\right)$ for $n=10$. Furthermore, the k-matchings for $D_{n}, U_{n}, Q_{n}, T_{n}^{4}(n-7,0,2)$, and $T_{n}^{4}(n-8,0,3)$ are zero for $3 \leq k \leq n / 2$. Therefore, we obtain (52) and (53).

Let $n=9$. By Property 1(ii), we get (54).
We introduce Lemmas 16-18 to deduce the increasing order of the trees in $\mathcal{T}_{n}^{\mathrm{B}}$ with $n \geq 7$ which is given in Lemma 19.

Let $D_{n}^{4}\left(n_{1} ; n_{2}-2 p, p ; n_{3}\right)$ be a tree obtained from P_{5} by attaching n_{1} and n_{3} pendant edges to v_{1} and v_{3}, respectively, and then attaching p paths of length two and $n_{2}-2 p$ pendant edges to v_{2}, where $n_{1}+n_{2}+n_{3}=n-5, n_{1} \geq n_{3}, 0 \leq$ $n_{2} \leq n-5$ and $0 \leq p \leq\left[n_{2} / 2\right]$. Obviously, the trees in \mathcal{T}_{n}^{4} are represented by $D_{n}^{4}\left(n_{1} ; n_{2}-2 p, p ; n_{3}\right)$. If $p=0$, then $D_{n}^{4}\left(n_{1} ; n_{2}-2 p, p ; n_{3}\right)=T_{n}^{4}\left(n_{1}, n_{2}, n_{3}\right)$. If $n_{2}=0$, then $T_{n}^{4}\left(n_{1}, n_{2}, n_{3}\right) \in \mathcal{T}_{n}^{\mathrm{A}}$. If $n_{2} \neq 0$, then $D_{n}^{4}\left(n_{1} ; n_{2}-2 p, p ; n_{3}\right) \in \mathcal{T}_{n}^{\mathrm{B}}$. For example, $D_{n}^{4}(0 ; 2,1 ; 0)=M_{9}$. For $D_{n}^{4}\left(n_{1} ; n_{2}-2 p, p ; n_{3}\right)$, we simply quote Lemma 16 presented by Gutman and Zhang [4].

Lemma 16 [4] Let $q=n-5-n_{2}$ with $n_{2} \leq n-5$. Then $D_{n}^{4}\left(q ; n_{2}-2 p, p ; 0\right) \rightharpoonup$ $D_{n}^{4}\left(q-1 ; n_{2}-2 p, p ; 1\right) \rightharpoonup D_{n}^{4}\left(q-2 ; n_{2}-2 p, p ; 2\right) \rightharpoonup \cdots \rightharpoonup D_{n}^{4}\left(q-[q / 2] ; n_{2}-\right.$ $2 p, p ;[q / 2])$.

Lemma $17 D_{n}^{4}\left(n_{1} ; n_{2}-2 p, p ; n_{3}\right) \rightharpoonup D_{n}^{4}\left(n_{1} ; n_{2}-2 p-2, p+1 ; n_{3}\right)$ with $n_{2} \geq 2$ and $0 \leq p \leq\left[n_{2} / 2\right]$.

Proof Let the pendant edge attached at v_{2} of $T_{n}^{4}\left(n_{1}, n_{2}, n_{3}\right)$ and the pendant edge of a path of length two attached at v_{2} of $D_{n}^{4}\left(n_{1} ; n_{2}-2,1 ; n_{3}\right)$ be the edge e in (6). It follows from Lemma 2 that

$$
\begin{align*}
m\left(T_{n}^{4}\left(n_{1}, n_{2}, n_{3}\right), k\right)= & m\left(T_{n}^{4}\left(n_{1}, n_{2}-1, n_{3}\right), k\right) \\
& +m\left(K_{1, n_{1}+1} \cup K_{1, n_{3}+1}, k-1\right), \tag{55}\\
m\left(D_{n}^{4}\left(n_{1} ; n_{2}-2,1 ; n_{3}\right), k\right)= & m\left(T_{n}^{4}\left(n_{1}, n_{2}-1, n_{3}\right), k\right) \\
& +m\left(T_{n}^{4}\left(n_{1}, n_{2}-2, n_{3}\right), k-1\right) . \tag{56}
\end{align*}
$$

Since $K_{1, n_{1}+1} \cup K_{1, n_{3}+1}$ is a subgraph of $T_{n}^{4}\left(n_{1}, n_{2}-2, n_{3}\right)$, we have $m\left(K_{1, n_{1}+1} \cup\right.$ $\left.K_{1, n_{3}+1}, k-1\right) \leq m\left(T_{n}^{4}\left(n_{1}, n_{2}-2, n_{3}\right), k-1\right)$ where the equality does not hold for all values of k. For example, $m\left(K_{1, n_{1}+1} \cup K_{1, n_{3}+1}, 1\right)=n_{1}+n_{3}+2<n_{1}+n_{2}+n_{3}+2=$ $m\left(T_{n}^{4}\left(n_{1}, n_{2}-2, n_{3}\right), 1\right)$ since $n_{2} \geq 2$. By comparing (55) with (56), we have Lemma 17 for $p=0$. By recursion, Lemma 17 holds for $1 \leq p \leq\left[n_{2} / 2\right]$.

Since $m\left(C_{n}, 2\right)=4 n-19, m\left(C_{n}, 3\right)=2 n-12$ and $m\left(C_{n}, k\right)=0$ with $4 \leq k \leq$ $n / 2$, we have Lemma 18 .

Lemma 18 Let $T \in \mathcal{T}_{n}$. If $m(T, 2) \geq 4 n-19$ and $m(T, 3) \geq 2 n-12$, then $C_{n} \rightrightarrows T$, with equality iff the equalities in the two conditions hold simultaneously and $m(T, k)=$ 0 with $4 \leq k \leq n / 2$.

Lemma 19 For $T \in \mathcal{T}_{n}^{B}$, we have

$$
\begin{align*}
& H_{n} \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \rightharpoonup I_{n} \rightharpoonup B_{n} \rightharpoonup K_{n} \rightharpoonup L_{n} \rightharpoonup C_{n} \rightharpoonup T, \quad(n \geq 11) \tag{57}\\
& H_{n} \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \rightharpoonup I_{n} \rightharpoonup K_{n} \rightharpoonup B_{n} \rightharpoonup L_{n} \rightharpoonup J_{n} \rightharpoonup C_{n} \rightharpoonup T, \quad(n=10) \tag{58}\\
& H_{n} \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \rightharpoonup I_{n} \rightharpoonup K_{n} \rightharpoonup L_{n} \rightharpoonup B_{n} \rightharpoonup C_{n} \rightharpoonup T, \quad(n=9) \tag{59}\\
& H_{n} \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \rightharpoonup I_{n} \rightharpoonup L_{n} \rightharpoonup C_{n} \rightharpoonup T, \quad(n=8) \tag{60}\\
& H_{n} \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \rightharpoonup B_{n} \rightharpoonup M_{n} \rightharpoonup P_{n}, \quad(n=7) \tag{61}
\end{align*}
$$

Proof As $n \geq 7$, it follows from $m\left(H_{n}, 2\right)=2 n-7<3 n-13=m\left(Q_{n}^{\prime}, 2\right)<$ $m\left(A_{n}, 2\right)=3 n-12, m\left(H_{n}, 3\right)=m\left(Q_{n}^{\prime}, 3\right)=m\left(A_{n}, 3\right)=n-5$ and $m\left(H_{n}, k\right)=$ $m\left(Q_{n}^{\prime}, k\right)=m\left(A_{n}, k\right)=0$ with $4 \leq k \leq n / 2$ that $H_{n} \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n}$ in (57)-(61) holds. By Lemma 4, we have $A_{n} \rightharpoonup I_{n}$ in (57)-(60).

As $n \geq 7$, it follows from $m\left(I_{n}, 2\right)=3 n-13<3 n-12=m\left(B_{n}, 2\right), m\left(I_{n}, 3\right)=$ $2 n-12<2 n-11=m\left(B_{n}, 3\right)$ and $m\left(I_{n}, k\right)=m\left(B_{n}, k\right)$ with $4 \leq k \leq n / 2$ that

$$
\begin{equation*}
I_{n} \rightharpoonup B_{n}, \quad(n \geq 7) \tag{62}
\end{equation*}
$$

As $n \geq 8$, it follows from $m\left(K_{n}, 2\right)=4 n-21<4 n-20=m\left(L_{n}, 2\right)<4 n-19=$ $m\left(C_{n}, 2\right), m\left(K_{n}, 3\right)=m\left(L_{n}, 3\right)=m\left(C_{n}, 3\right)=2 n-12$ and $m\left(K_{n}, k\right)=m\left(L_{n}, k\right)=$ $m\left(C_{n}, k\right)=0$ with $4 \leq k \leq n / 2$ that

$$
\begin{equation*}
K_{n} \rightharpoonup L_{n} \rightharpoonup C_{n}, \quad(n \geq 8) \tag{63}
\end{equation*}
$$

As $n \geq 11$, by (62), Lemma5 and (63), we deduce $I_{n} \rightharpoonup B_{n} \rightharpoonup K_{n} \rightharpoonup L_{n} \rightharpoonup C_{n}$ in (57).

As $n=10$ and $n=9$, the calculation yields $I_{n} \rightharpoonup K_{n} \rightharpoonup B_{n} \rightharpoonup L_{n} \rightharpoonup J_{n} \rightharpoonup C_{n}$ in (58) and $I_{n} \rightharpoonup K_{n} \rightharpoonup L_{n} \rightharpoonup B_{n} \rightharpoonup C_{n}$ in (59), respectively.

As $n=8$, by (63), we have $I_{n} \rightharpoonup L_{n} \rightharpoonup C_{n}$ in (60) since I_{8} and K_{8} are identical.
As $n=7$, Lemma 3 and the calculation yield $A_{n} \rightharpoonup B_{n} \rightharpoonup M_{n} \rightharpoonup P_{n}$ in (61).
Next, we prove the last inequality $C_{n} \rightharpoonup T$ in (57)-(60).
Since $m\left(T_{n}^{6}(n-7,0,0,0,0), 2\right)=4 n-18>4 n-19$ and $m\left(T_{n}^{6}(n-\right.$ $7,0,0,0,0), 3)=3 n-17>2 n-12$ for $n \geq 8$, by Lemma 18 , we have $C_{n} \rightharpoonup T_{n}^{6}(n-7,0,0,0,0)$ for $n \geq 7$. Therefore, by Lemma3, we deduce $C_{n} \rightharpoonup T$ for $T \in \mathcal{T}_{n}^{d}$ with $d \geq 6$ and $n \geq 8$. By Lemma 8, we have $C_{n} \rightharpoonup T$ for $T \in \mathcal{T}_{n}^{5}$ with $n \geq 8$. Next, we prove $C_{n} \rightharpoonup T$ for $T \in \mathcal{T}_{n}^{4}$ with $n \geq 8$. Since $T \in \mathcal{T}_{n}^{\mathrm{B}}$, we have $1 \leq n_{2} \leq n-5$. Let $n_{1}+n_{3}=r$, then $0 \leq r \leq n-6$. We consider six cases according to the values of r as follows.

Case (i) $r=0$, namely $T=D_{n}^{4}(0 ; n-5-2 p, p ; 0)$.
Since $T \neq H_{n}$, we have $1 \leq p \leq[(n-5) / 2]$ with $n \geq 8$. Obviously, $M_{n}=$ $D_{n}^{4}(0 ; n-7,1 ; 0)$. By Lemma 17, we get $M_{n} \rightrightarrows T$. By Lemma 6, we deduce $C_{n} \rightharpoonup T$ in (57)-(60).

Case (ii) $r=1$, namely $T=D_{n}^{4}(1 ; n-6-2 p, p ; 0)$.

Since $T \neq I_{n}$, we have $1 \leq p \leq[(n-6) / 2]$ with $n \geq 8$. By Lemma 17 , we get $D_{n}^{4}(1 ; n-8,1 ; 0) \rightrightarrows T$. Since $m\left(D_{n}^{4}(1 ; n-8,1 ; 0), 2\right)=4 n-19$ and $m\left(D_{n}^{4}(1 ; n-\right.$ $8,1 ; 0), 3)=5 n-33>2 n-12$ for $n \geq 8$, by Lemma 18, we have $C_{n} \rightharpoonup$ $D_{n}^{4}(1 ; n-8,1 ; 0)$ with $n \geq 8$. Therefore, $C_{n} \rightharpoonup T$ in (57)-(60) holds.

Case (iii) $r=2$, namely $T=D_{n}^{4}\left(2-n_{3} ; n-7-2 p, p ; n_{3}\right)$, where $0 \leq p \leq$ $[(n-7) / 2]$ and $n \geq 8$.

As $n \geq 11$, by Lemmas 16 and 17, we get $J_{n} \rightrightarrows T$. By Lemma 7, we deduce $C_{n} \rightharpoonup$ T in (57). As $n=10,9$, the calculation yields $C_{n} \rightharpoonup T$ in (58)-(59). As $n=8$, there are only two trees Q_{8}^{\prime} and L_{8}. Therefore, it is uncesessary to prove $C_{n} \rightharpoonup T$ in (60).

Case (iv) $3 \leq r \leq n-8$, namely $T=D_{n}^{4}\left(r-n_{3} ; n-5-r-2 p, p ; n_{3}\right)$, where $0 \leq p \leq[(n-5-r) / 2]$ and $n \geq 11$.

By Lemmas 16 and 17, we get $T_{n}^{4}(r, n-5-r, 0) \rightrightarrows T$. As $n=11, C_{n} \rightharpoonup T$ in (57) holds from $r=3$ and the calculation yields $C_{n} \rightharpoonup T_{n}^{4}(3,3,0)$. As $n \geq 12$, we have

$$
\begin{aligned}
& m\left(T_{n}^{4}(r, n-5-r, 0), 2\right)=-r^{2}+(n-5) r+(2 n-7) \geq 5 n-31 \geq 4 n-19 \\
& m\left(T_{n}^{4}(r, n-r-5,0), 3\right)=(r+1)(n-5-r) \geq 3(n-7)>2 n-12
\end{aligned}
$$

By Lemma 18, we have $C_{n} \rightharpoonup T_{n}^{4}(r, n-5-r, 0)$. Therefore, $C_{n} \rightharpoonup T$ in (57) holds for $n \geq 12$.

Case (v) $r=n-7$, namely $T=T_{n}^{4}\left(n-7-n_{3}, 2, n_{3}\right)$ or $T=D_{n}^{4}(n-7-$ $\left.n_{3} ; 0,1 ; n_{3}\right)$.

Let $T=T_{n}^{4}\left(n-7-n_{3}, 2, n_{3}\right)$. Since $T \neq K_{n}$, we have $1 \leq n_{3} \leq(n-7) / 2$ with $n \geq 9$. As $n \geq 10$, by Lemma 16, we get $T_{n}^{4}(n-8,2,1) \rightrightarrows T$. Since $m\left(T_{n}^{4}(n-8,2,1), 2\right)=5 n-29 \geq 4 n-19$ and $m\left(T_{n}^{4}(n-8,2,1), 3\right)=4 n-28>$ $2 n-12$ for $n \geq 10$, by Lemma 18, we obtain $C_{n} \rightharpoonup T_{n}^{4}(n-8,2,1)$ with $n \geq 10$. Therefore, $C_{n} \rightharpoonup T$ in (57)-(58) holds. As $n=9, T=T_{n}^{4}(1,2,1)$ and the calculation yields $C_{n} \rightharpoonup T_{n}^{4}(1,2,1)$. Thus $C_{n} \rightharpoonup T$ in (59) holds.

Let $T=D_{n}^{4}\left(n-7-n_{3} ; 0,1 ; n_{3}\right)$ and $n \geq 8$. By Lemma 16, we have $D_{n}^{4}(n-7 ; 0,1 ; 0) \rightrightarrows T$. Since $m\left(D_{n}^{4}(n-7 ; 0,1 ; 0), 2\right)=4 n-19$ and $m\left(D_{n}^{4}(n-\right.$ $7 ; 0,1 ; 0), 3)=3 n-17>2 n-12$ for $n \geq 8$, by Lemma 18, we obtain $C_{n} \rightharpoonup D_{n}^{4}(n-7 ; 0,1 ; 0)$ with $n \geq 8$. Therefore, $C_{n} \rightharpoonup T$ in (57)-(60) holds.

Case (vi) $r=n-6$, namely $T=T_{n}^{4}\left(n-6-n_{3}, 1, n_{3}\right)$.
Since $T \neq Q_{n}^{\prime}, L_{n}$, we have $2 \leq n_{3} \leq(n-6) / 2$ with $n \geq 10$. By Lemma 16, we get $T_{n}^{4}(n-8,1,2) \rightrightarrows T$. Since $m\left(T_{n}^{4}(n-8,1,2), 2\right)=5 n-29 \geq 4 n-19$ and $m\left(T_{n}^{4}(n-8,1,2), 3\right)=3 n-21>2 n-12$ for $n \geq 10$, by Lemma 18, we obtain $C_{n} \rightharpoonup T_{n}^{4}(n-8,1,2)$ with $n \geq 10$. Therefore, $C_{n} \rightharpoonup T$ in (57)-(58) holds.

By Lemmas 9, 10, 14, and 19, we deduce the first 9 trees with minimal energies in \mathcal{T}_{n} for $n \geq 46$ in Theorem 1 .

Theorem 1 Let $T \in \mathcal{T}_{n}$. We have $(\diamond) \rightharpoonup H_{n} \rightharpoonup T$ for $n \geq 46$.

Proof By Lemma 9, we have $T_{n}^{4}(n-7,0,2) \rightharpoonup H_{n}$ as $n \geq 14$. By Lemmas 10 and 14, we get $H_{n} \rightharpoonup T$ for $T \in \mathcal{T}_{n}^{\mathrm{A}}$ with $n \geq 46$. By Lemma 19, we have $H_{n} \rightharpoonup T$ for $T \in \mathcal{T}_{n}^{\mathrm{B}}$ with $n \geq 7$.

By the aforementioned lemmas and the calculation, we derive the first 12 and 11 trees in the increasing order according to their minimal energies within \mathcal{T}_{n} for $7117598 \geq n \geq 26$ and $25 \geq n \geq 18$, respectively, as given in Theorem 2 .

Theorem 2 Let $T \in \mathcal{T}_{n}$, we have

$$
\begin{align*}
(\diamond) & \rightharpoonup H_{n} \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime} \\
& \rightharpoonup T, \quad(7117598 \geq n \geq 59), \tag{64}\\
(\diamond) & \rightharpoonup H_{n} \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{3}(n-9,5) \\
& \rightharpoonup T, \quad(58 \geq n \geq 46), \tag{65}\\
(\diamond) & \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup H_{n} \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{3}(n-9,5) \\
& \rightharpoonup T, \quad(45 \geq n \geq 40), \tag{66}\\
(\diamond) & \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup H_{n} \rightharpoonup T_{n}^{3}(n-9,5) \\
& \rightharpoonup T, \quad(39 \geq n \geq 26), \tag{67}\\
(\diamond) & \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{3}(n-9,5) \\
& \rightharpoonup T, \quad(25 \geq n \geq 18) . \tag{68}
\end{align*}
$$

Proof By Lemmas 9, 10, 14, and 11, we have the first to the fourth inequalities in (64).
By Lemmas 9, 10 and 14, we have the first to the fourth inequalities in (65).
The calculation yields $H_{n} \rightharpoonup T_{n}^{4}(n-8,0,3)$ for $45 \geq n \geq 40$. By Lemmas 14 and 10, we have the first to the fourth inequalities in (66).

The calculation yields $T_{n}^{4}(n-8,0,3) \rightharpoonup H_{n} \rightharpoonup T_{n}^{3}(n-9,5)$ for $39 \geq n \geq 26$. By Lemma 14, we have the first to the fourth inequalities in (67).

By Lemma 14, we have the first to the third inequalities in (68).
Next, we prove the last inequalities in (64)-(68). By Lemmas 12 and 14, we deduce $Q_{n}^{\prime} \rightharpoonup T$ in (64) for $T \in \mathcal{T}_{n}^{\mathrm{A}}$. By Lemma 19, we get $Q_{n}^{\prime} \rightharpoonup T$ in (64) for $T \in \mathcal{T}_{n}^{\mathrm{B}}$. By Lemma 14, we have $T_{n}^{3}(n-9,5) \rightharpoonup T$ in (65)-(68) for $T \in \mathcal{T}_{n}^{\mathrm{A}}$. By Lemmas 12 and 19, we obtain $T_{n}^{3}(n-9,5) \rightharpoonup T$ in (65)-(67) for $T \in \mathcal{T}_{n}^{\mathrm{B}}$. The calculation yields $T_{n}^{3}(n-9,5) \rightharpoonup H_{n}$ for $25 \geq n \geq 18$. Therefore, by Lemma 19, we have $T_{n}^{3}(n-9,5) \rightharpoonup T$ in (68) for $T \in \mathcal{T}_{n}^{\overline{\mathrm{B}}}$.

It can be seen from Theorems 1 and 2 that the diameters of the trees with minimal energies obtained in \mathcal{T}_{n} are less than 5 as $n \geq 18$. We conclude that the seventh-minimal tree in \mathcal{T}_{n} is Q_{n} for $n \geq 18$. Theorem 2 shows that Q_{n}^{\prime} is the twelfth-minimal tree in \mathcal{T}_{n} for $7117598 \geq n \geq 59$ and Q_{n}^{\prime} is not the seventh in \mathcal{T}_{n} for $58 \geq n \geq 18$.

From Conjecture 2 and the proof for (64), we suggest Conjecture 3.
Conjecture $3(\diamond) \rightharpoonup H_{n} \rightharpoonup T_{n}^{3}(n-8,4) \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup Q_{n}^{\prime} \rightharpoonup T$ for $n \geq 7117599$.

The calculation yields $T_{n}^{4}(n-11,0,6) \rightharpoonup H_{n}$ for $n=17, T_{n}^{4}(n-10,0,5) \rightharpoonup H_{n}$ for $n=16,15, T_{n}^{4}(n-9,0,4) \rightharpoonup H_{n}$ for $n=14,13, T_{n}^{4}(n-8,0,3) \rightharpoonup H_{n}$ for $n=12,11, T_{n}^{4}(n-7,0,2) \rightharpoonup H_{n}$ for $n=10,9$, and $U_{n} \rightharpoonup H_{n}$ for $n=8,7$. In conclusion, the energies of the last trees in (46)-(54) and (41)-(42) are less than $E\left(H_{n}\right)$. Namely, the maximal energy for the trees in $\mathcal{T}_{n}^{\mathrm{A}}$ is less than the minimal energy for the trees in $\mathcal{T}_{n}^{\mathrm{B}}$. It should be noted that all the trees in $\mathcal{T}_{n}^{\mathrm{A}}$ for $n=8$ and $n=7$ are those in (41) and (42), respectively. Therefore, from Lemmas 15, 19 and the calculation, we have Theorem 3 .

Theorem 3 Let $T \in \mathcal{T}_{n}$. The increasing orders by their energies of the trees in \mathcal{T}_{n} for $17 \geq n \geq 7$ are the inequalities obtained by connecting the last terms in (46)-(54) and (41)-(42) with the first terms in (57)-(61).

Theorem 3 shows that the diameters of the trees with minimal energies obtained in \mathcal{T}_{n} are less than 6 as $17 \geq n \geq 8$. It can be seen from Theorem 3 that the seventhminimal tree is Q_{n} for $17 \geq n \geq 12$ and Q_{n}^{\prime} is not the seventh one for $17 \geq n \geq 7$.

By Lemma 13, we can deduce the increasing orders in terms of their minimal energies for the trees in $\mathcal{T}_{n}^{\mathrm{A}}$ with $n \geq 18$. Furthermore, by Lemma 19 and the calculation, we can derive more than 12 trees for $7117598 \geq n \geq 26$ and more than 11 trees for $25 \geq n \geq 18$ in the increasing order in \mathcal{T}_{n}. However, the further series trees have no common ordering as $7117598 \geq n \geq 18$. We list the first 25 trees for $n=58$ in (69) as an example. Let $T \in \mathcal{T}_{58}$. We have

$$
\begin{align*}
(\perp) & \rightharpoonup H_{n} \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{3}(n-9,5) \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \\
& \rightharpoonup T_{n}^{4}(n-9,0,4) \rightharpoonup T_{n}^{3}(n-10,6) \rightharpoonup T_{n}^{4}(n-10,0,5) \rightharpoonup I_{n} \rightharpoonup B_{n} \\
& \rightharpoonup T_{n}^{3}(n-11,7) \rightharpoonup T_{n}^{4}(n-11,0,6) \rightharpoonup K_{n} \rightharpoonup L_{n} \rightharpoonup C_{n} \rightharpoonup T . \tag{69}
\end{align*}
$$

Proof of (69) First, we prove

$$
\begin{align*}
(\perp) & \rightharpoonup T_{n}^{4}(n-8,0,3) \rightharpoonup T_{n}^{3}(n-9,5) \rightharpoonup T_{n}^{4}(n-9,0,4) \rightharpoonup T_{n}^{3}(n-10,6) \\
& \rightharpoonup T_{n}^{4}(n-10,0,5) \rightharpoonup T_{n}^{3}(n-11,7) \rightharpoonup T_{n}^{4}(n-11,0,6) \rightharpoonup T_{n}^{3}(n-12,8) \\
& \rightharpoonup T \tag{70}
\end{align*}
$$

for $T \in \mathcal{T}_{n}^{\mathrm{A}}$. As $n=58$ and $2 \leq a \leq 6<(n-11) / 3$, by Lemma 13(i), we have the first to the eighth inequalities in (70). By the method similar to that for $T_{n}^{3}(n-9,5) \rightharpoonup T$ in (45) with $T \in \mathcal{T}_{n}^{\mathrm{A}}$, we deduce $T_{n}^{3}(n-12,8) \rightharpoonup T$ in (70) for $T \in \mathcal{T}_{n}^{\mathrm{A}}$.

As $n=58$, the calculation yields $T_{n}^{3}(n-8,4) \rightharpoonup H_{n} \rightharpoonup T_{n}^{4}(n-8,0,3), T_{n}^{3}(n-$ $9,5) \rightharpoonup Q_{n}^{\prime} \rightharpoonup A_{n} \rightharpoonup T_{n}^{4}(n-9,0,4), T_{n}^{4}(n-10,0,5) \rightharpoonup I_{n} \rightharpoonup B_{n} \rightharpoonup T_{n}^{3}(n-11,7)$, $T_{n}^{4}(n-11,0,6) \rightharpoonup K_{n}$, and $C_{n} \rightharpoonup T_{n}^{3}(n-12,8)$. By comparing (70) with (57), we have the first to the fifteenth inequalities in (69). From (70) and $C_{n} \rightharpoonup T_{n}^{3}(n-12,8)$, we get $C_{n} \rightharpoonup T$ in (69) for $T \in \mathcal{T}_{58}^{\mathrm{A}}$. From (57), we have $C_{n} \rightharpoonup T$ in (69) for $T \in \mathcal{T}_{58}^{\mathrm{B}}$.

4 Conclusions

Using the quasi-ordering relation and the theorem of zero points, we studied the ordering of the trees in terms of their minimal energies. We provided the preceding trees in the increasing order of their energies within the set of the trees with n vertices. In Theorem 1, we deduced the first 9 trees for $n \geq 46$. In Theorem 2, we deduced the first 12 and 11 trees for $7117598 \geq n \geq 26$ and $25 \geq n \geq 18$, respectively. In Theorem 3, we listed the first $n+6,17,15$, and 12 trees for $17 \geq n \geq 11, n=10$, $n=9$ and $n=8$, respectively, and derived all the 11 trees in the increasing order of their energies for $n=7$. The numbers of the trees obtained exceed Gutman's [3] and Li and Li 's results [7]. The further ordering for $n \geq 7117598$ is beyond the method presented here and a new approach should be devised in the future work.

The results obtained here are in agreement with a generally accepted idea that the energy of trees increases as the extent of branching decreases [19]. For the trees under consideration, the ones with smaller diameters have smaller energies. The maximal diameters of the trees with minimal energies obtained here are 4 for $n \geq 18$ and 5 for $17 \geq n \geq 8$, respectively.

Acknowledgments The work was partially supported by the National Natural Science Foundation of China under Grant No. 60773078 and the Shanghai Leading Academic Discipline Project under Project No. S30104.

References

1. D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application (Academic Press, New York, 1980)
2. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry. (Springer, Berlin, 1986)
3. I. Gutman, Acyclic systems with extremal Hückel π-electron energy. Theoret. Chim. Acta 45, 79-87 (1977)
4. I. Gutman, F.J. Zhang, On the ordering of graphs with respect to their matching numbers. Discrete Appl. Math. 15, 25-33 (1986)
5. F.J. Zhang, H. Li, On acyclic conjugated molecules with minimal energies. Discrete Appl. Math. 92, 71-84 (1999)
6. H. Li, On minimal energy ordering of acyclic conjugated molecules. J. Math. Chem. 25, 145-169 (1999)
7. N. Li, S. Li, On the extremal energies of trees. MATCH Commun. Math. Comput. Chem. 59, 291-314 (2008)
8. J.M. Guo, On the minimal energy ordering of trees with perfect matchings. Discrete Appl. Math. 156, 2598-2605 (2008)
9. W.H. Wang, Ordering of Hückel trees according to minimal energies. Linear Algebra Appl. 430, 703-713 (2009)
10. Y.P. Hou, Unicyclic graphs with minimal energy. J. Math. Chem. 29, 163-168 (2001)
11. Y.P. Hou, I. Gutman, C.W. Woo, Unicyclic graphs with maximal energy. Linear Algebra Appl. 356, 27-36 (2002)
12. W.H. Wang, A. Chang, D.Q. Lu, Unicyclic graphs possessing Kekulé structures with minimal energy. J. Math. Chem. 42, 311-320 (2007)
13. I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second-maximal and thirdmaximal energy. MATCH Commun. Math. Comput. Chem. 58, 75-82 (2007)
14. Z. Liu, B. Zhou, Minimal energies of bipartite bicyclic graphs. MATCH Commun. Math. Comput. Chem. 59, 381-396 (2008)
15. S. Li, X. Li, Z. Zhu, On tricyclic graphs with minimal energy. MATCH Commun. Math. Comput. Chem. 59, 397-419 (2008)
16. B. Zhou, F. Li, On minimal energies of trees of a prescribed diameter. J. Math. Chem. 39, 465-473 (2006)
17. I. Gutman, S. Radenkovic, N. Li, S. Li, Extremal energy trees. MATCH Commun. Math. Comput. Chem. 59, 315-320 (2008)
18. W.G. Yan, L.Z. Ye, On the minimal energy of trees with a given diameter. Appl. Math. Lett. 18, 1046-1052 (2005)
19. I. Gutman, Acyclic conjugated molecules, trees and their energies. J. Math. Chem. 1, 123-143 (1987)

[^0]: W.-H. Wang (\boxtimes) • L.-Y. Kang

 Department of Mathematics, Shanghai University, Shanghai 200444, China
 e-mail: whwang @shu.edu.cn

